License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.IPEC.2022.7
URN: urn:nbn:de:0030-drops-173633
URL: https://drops.dagstuhl.de/opus/volltexte/2022/17363/
Go to the corresponding LIPIcs Volume Portal


Bodlaender, Hans L. ; Groenland, Carla ; Jacob, Hugo

On the Parameterized Complexity of Computing Tree-Partitions

pdf-format:
LIPIcs-IPEC-2022-7.pdf (0.8 MB)


Abstract

We study the parameterized complexity of computing the tree-partition-width, a graph parameter equivalent to treewidth on graphs of bounded maximum degree.
On one hand, we can obtain approximations of the tree-partition-width efficiently: we show that there is an algorithm that, given an n-vertex graph G and an integer k, constructs a tree-partition of width O(k⁷) for G or reports that G has tree-partition width more than k, in time k^O(1) n². We can improve slightly on the approximation factor by sacrificing the dependence on k, or on n.
On the other hand, we show the problem of computing tree-partition-width exactly is XALP-complete, which implies that it is W[t]-hard for all t. We deduce XALP-completeness of the problem of computing the domino treewidth. Finally, we adapt some known results on the parameter tree-partition-width and the topological minor relation, and use them to compare tree-partition-width to tree-cut width.

BibTeX - Entry

@InProceedings{bodlaender_et_al:LIPIcs.IPEC.2022.7,
  author =	{Bodlaender, Hans L. and Groenland, Carla and Jacob, Hugo},
  title =	{{On the Parameterized Complexity of Computing Tree-Partitions}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/17363},
  URN =		{urn:nbn:de:0030-drops-173633},
  doi =		{10.4230/LIPIcs.IPEC.2022.7},
  annote =	{Keywords: Parameterized algorithms, Tree partitions, tree-partition-width, Treewidth, Domino Treewidth, Approximation Algorithms, Parameterized Complexity}
}

Keywords: Parameterized algorithms, Tree partitions, tree-partition-width, Treewidth, Domino Treewidth, Approximation Algorithms, Parameterized Complexity
Collection: 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)
Issue Date: 2022
Date of publication: 14.12.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI