License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ISAAC.2020.1
URN: urn:nbn:de:0030-drops-133458
Go to the corresponding LIPIcs Volume Portal

Oum, Sang-il

How to Decompose a Graph into a Tree-Like Structure (Invited Talk)

LIPIcs-ISAAC-2020-1.pdf (0.2 MB)


Many NP-hard problems on graphs are known to be tractable if we restrict the input to have a certain decomposition into a tree-like structure. Width parameters of graphs are measures on how easy it is to decompose the input graph into a tree-like structure. The tree-width is one of the most well-studied width parameters of graphs and the rank-width is a generalization of tree-width into dense graphs. This talk will present a survey on width parameters of graphs such as tree-width and rank-width and discuss known algorithms to find a decomposition of an input graph into such tree-like structures efficiently.

BibTeX - Entry

  author =	{Sang-il Oum},
  title =	{{How to Decompose a Graph into a Tree-Like Structure (Invited Talk)}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Yixin Cao and Siu-Wing Cheng and Minming Li},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-133458},
  doi =		{10.4230/LIPIcs.ISAAC.2020.1},
  annote =	{Keywords: tree-width, rank-width}

Keywords: tree-width, rank-width
Collection: 31st International Symposium on Algorithms and Computation (ISAAC 2020)
Issue Date: 2020
Date of publication: 04.12.2020

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI