License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2021.66
URN: urn:nbn:de:0030-drops-145065
URL: https://drops.dagstuhl.de/opus/volltexte/2021/14506/
Go to the corresponding LIPIcs Volume Portal


Kaminski, Michael ; Shparlinski, Igor E.

Sets of Linear Forms Which Are Hard to Compute

pdf-format:
LIPIcs-MFCS-2021-66.pdf (0.7 MB)


Abstract

We present a uniform description of sets of m linear forms in n variables over the field of rational numbers whose computation requires m(n - 1) additions. Our result is based on bounds on the height of the annihilating polynomials in the Perron theorem and an effective form of the Lindemann-Weierstrass theorem which is due to Sert (1999).

BibTeX - Entry

@InProceedings{kaminski_et_al:LIPIcs.MFCS.2021.66,
  author =	{Kaminski, Michael and Shparlinski, Igor E.},
  title =	{{Sets of Linear Forms Which Are Hard to Compute}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{66:1--66:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14506},
  URN =		{urn:nbn:de:0030-drops-145065},
  doi =		{10.4230/LIPIcs.MFCS.2021.66},
  annote =	{Keywords: Linear algorithms, additive complexity, effective Perron theorem, effective Lindemann-Weierstrass theorem}
}

Keywords: Linear algorithms, additive complexity, effective Perron theorem, effective Lindemann-Weierstrass theorem
Collection: 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)
Issue Date: 2021
Date of publication: 18.08.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI