License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2023.47
URN: urn:nbn:de:0030-drops-178976
URL: https://drops.dagstuhl.de/opus/volltexte/2023/17897/
Go to the corresponding LIPIcs Volume Portal


Le, Hung ; Milenković, Lazar ; Solomon, Shay

Sparse Euclidean Spanners with Optimal Diameter: A General and Robust Lower Bound via a Concave Inverse-Ackermann Function

pdf-format:
LIPIcs-SoCG-2023-47.pdf (0.8 MB)


Abstract

In STOC'95 [S. Arya et al., 1995] Arya et al. showed that any set of n points in ℝ^d admits a (1+ε)-spanner with hop-diameter at most 2 (respectively, 3) and O(n log n) edges (resp., O(n log log n) edges). They also gave a general upper bound tradeoff of hop-diameter k with O(n α_k(n)) edges, for any k ≥ 2. The function α_k is the inverse of a certain Ackermann-style function, where α₀(n) = ⌈n/2⌉, α₁(n) = ⌈√n⌉, α₂(n) = ⌈log n⌉, α₃(n) = ⌈log log n⌉, α₄(n) = log^* n, α₅(n) = ⌊ 1/2 log^*n ⌋, …. Roughly speaking, for k ≥ 2 the function α_{k} is close to ⌊(k-2)/2⌋-iterated log-star function, i.e., log with ⌊(k-2)/2⌋ stars.
Despite a large body of work on spanners of bounded hop-diameter, the fundamental question of whether this tradeoff between size and hop-diameter of Euclidean (1+ε)-spanners is optimal has remained open, even in one-dimensional spaces. Three lower bound tradeoffs are known:
- An optimal k versus Ω(n α_k(n)) by Alon and Schieber [N. Alon and B. Schieber, 1987], but it applies to stretch 1 (not 1+ε).
- A suboptimal k versus Ω(nα_{2k+6}(n)) by Chan and Gupta [H. T.-H. Chan and A. Gupta, 2006].
- A suboptimal k versus Ω(n/(2^{6⌊k/2⌋}) α_k(n)) by Le et al. [Le et al., 2022]. This paper establishes the optimal k versus Ω(n α_k(n)) lower bound tradeoff for stretch 1+ε, for any ε > 0, and for any k. An important conceptual contribution of this work is in achieving optimality by shaving off an extremely slowly growing term, namely 2^{6⌊k/2⌋} for k ≤ O(α(n)); such a fine-grained optimization (that achieves optimality) is very rare in the literature.
To shave off the 2^{6⌊k/2⌋} term from the previous bound of Le et al., our argument has to drill much deeper. In particular, we propose a new way of analyzing recurrences that involve inverse-Ackermann style functions, and our key technical contribution is in presenting the first explicit construction of concave versions of these functions. An important advantage of our approach over previous ones is its robustness: While all previous lower bounds are applicable only to restricted 1-dimensional point sets, ours applies even to random point sets in constant-dimensional spaces.

BibTeX - Entry

@InProceedings{le_et_al:LIPIcs.SoCG.2023.47,
  author =	{Le, Hung and Milenkovi\'{c}, Lazar and Solomon, Shay},
  title =	{{Sparse Euclidean Spanners with Optimal Diameter: A General and Robust Lower Bound via a Concave Inverse-Ackermann Function}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{47:1--47:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/17897},
  URN =		{urn:nbn:de:0030-drops-178976},
  doi =		{10.4230/LIPIcs.SoCG.2023.47},
  annote =	{Keywords: Euclidean spanners, Ackermann functions, convex functions, hop-diameter}
}

Keywords: Euclidean spanners, Ackermann functions, convex functions, hop-diameter
Collection: 39th International Symposium on Computational Geometry (SoCG 2023)
Issue Date: 2023
Date of publication: 09.06.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI