License:
Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2019.48
URN: urn:nbn:de:0030-drops-106241
URL: https://drops.dagstuhl.de/opus/volltexte/2019/10624/
Duan, Ran ;
Jin, Ce ;
Wu, Hongxun
Faster Algorithms for All Pairs Non-Decreasing Paths Problem
Abstract
In this paper, we present an improved algorithm for the All Pairs Non-decreasing Paths (APNP) problem on weighted simple digraphs, which has running time O~(n^{{3 + omega}/{2}}) = O~(n^{2.686}). Here n is the number of vertices, and omega < 2.373 is the exponent of time complexity of fast matrix multiplication [Williams 2012, Le Gall 2014]. This matches the current best upper bound for (max, min)-matrix product [Duan, Pettie 2009] which is reducible to APNP. Thus, further improvement for APNP will imply a faster algorithm for (max, min)-matrix product. The previous best upper bound for APNP on weighted digraphs was O~(n^{1/2(3 + {3 - omega}/{omega + 1} + omega)}) = O~(n^{2.78}) [Duan, Gu, Zhang 2018]. We also show an O~(n^2) time algorithm for APNP in undirected simple graphs which also reaches optimal within logarithmic factors.
BibTeX - Entry
@InProceedings{duan_et_al:LIPIcs:2019:10624,
author = {Ran Duan and Ce Jin and Hongxun Wu},
title = {{Faster Algorithms for All Pairs Non-Decreasing Paths Problem}},
booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
pages = {48:1--48:13},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-109-2},
ISSN = {1868-8969},
year = {2019},
volume = {132},
editor = {Christel Baier and Ioannis Chatzigiannakis and Paola Flocchini and Stefano Leonardi},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2019/10624},
URN = {urn:nbn:de:0030-drops-106241},
doi = {10.4230/LIPIcs.ICALP.2019.48},
annote = {Keywords: graph optimization, matrix multiplication, non-decreasing paths}
}
Keywords: |
|
graph optimization, matrix multiplication, non-decreasing paths |
Collection: |
|
46th International Colloquium on Automata, Languages, and Programming (ICALP 2019) |
Issue Date: |
|
2019 |
Date of publication: |
|
04.07.2019 |