License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.DISC.2021.15
URN: urn:nbn:de:0030-drops-148173
Go to the corresponding LIPIcs Volume Portal

Cambus, Mélanie ; Choo, Davin ; Miikonen, Havu ; Uitto, Jara

Massively Parallel Correlation Clustering in Bounded Arboricity Graphs

LIPIcs-DISC-2021-15.pdf (0.8 MB)


Identifying clusters of similar elements in a set is a common task in data analysis. With the immense growth of data and physical limitations on single processor speed, it is necessary to find efficient parallel algorithms for clustering tasks. In this paper, we study the problem of correlation clustering in bounded arboricity graphs with respect to the Massively Parallel Computation (MPC) model. More specifically, we are given a complete graph where the edges are either positive or negative, indicating whether pairs of vertices are similar or dissimilar. The task is to partition the vertices into clusters with as few disagreements as possible. That is, we want to minimize the number of positive inter-cluster edges and negative intra-cluster edges.
Consider an input graph G on n vertices such that the positive edges induce a λ-arboric graph. Our main result is a 3-approximation (in expectation) algorithm to correlation clustering that runs in 𝒪(log λ ⋅ poly(log log n)) MPC rounds in the strongly sublinear memory regime. This is obtained by combining structural properties of correlation clustering on bounded arboricity graphs with the insights of Fischer and Noever (SODA '18) on randomized greedy MIS and the PIVOT algorithm of Ailon, Charikar, and Newman (STOC '05). Combined with known graph matching algorithms, our structural property also implies an exact algorithm and algorithms with worst case (1+ε)-approximation guarantees in the special case of forests, where λ = 1.

BibTeX - Entry

  author =	{Cambus, M\'{e}lanie and Choo, Davin and Miikonen, Havu and Uitto, Jara},
  title =	{{Massively Parallel Correlation Clustering in Bounded Arboricity Graphs}},
  booktitle =	{35th International Symposium on Distributed Computing (DISC 2021)},
  pages =	{15:1--15:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-210-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{209},
  editor =	{Gilbert, Seth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-148173},
  doi =		{10.4230/LIPIcs.DISC.2021.15},
  annote =	{Keywords: MPC Algorithm, Correlation Clustering, Bounded Arboricity}

Keywords: MPC Algorithm, Correlation Clustering, Bounded Arboricity
Collection: 35th International Symposium on Distributed Computing (DISC 2021)
Issue Date: 2021
Date of publication: 04.10.2021

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI