Go to the corresponding LIPIcs Volume Portal 
pdfformat: 

@InProceedings{kudryashov:LIPIcs.ITP.2022.23, author = {Kudryashov, Yury}, title = {{Formalizing the Divergence Theorem and the Cauchy Integral Formula in Lean}}, booktitle = {13th International Conference on Interactive Theorem Proving (ITP 2022)}, pages = {23:123:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {9783959772525}, ISSN = {18688969}, year = {2022}, volume = {237}, editor = {Andronick, June and de Moura, Leonardo}, publisher = {Schloss Dagstuhl  LeibnizZentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/opus/volltexte/2022/16732}, URN = {urn:nbn:de:0030drops167326}, doi = {10.4230/LIPIcs.ITP.2022.23}, annote = {Keywords: divergence theorem, Green’s theorem, Gauge integral, Cauchy integral formula, CauchyGoursat theorem, complex analysis} }
Keywords:  divergence theorem, Green’s theorem, Gauge integral, Cauchy integral formula, CauchyGoursat theorem, complex analysis  
Collection:  13th International Conference on Interactive Theorem Proving (ITP 2022)  
Issue Date:  2022  
Date of publication:  03.08.2022  
Supplementary Material:  InteractiveResource (Documentation Website): http://divthm.urkud.name/ 