License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2020.80
URN: urn:nbn:de:0030-drops-117657
Go to the corresponding LIPIcs Volume Portal

Ball, Marshall ; Dachman-Soled, Dana ; Kulkarni, Mukul ; Malkin, Tal

Limits to Non-Malleability

LIPIcs-ITCS-2020-80.pdf (0.7 MB)


There have been many successes in constructing explicit non-malleable codes for various classes of tampering functions in recent years, and strong existential results are also known. In this work we ask the following question:
When can we rule out the existence of a non-malleable code for a tampering class ℱ?
First, we start with some classes where positive results are well-known, and show that when these classes are extended in a natural way, non-malleable codes are no longer possible. Specifically, we show that no non-malleable codes exist for any of the following tampering classes:
- Functions that change d/2 symbols, where d is the distance of the code;
- Functions where each input symbol affects only a single output symbol;
- Functions where each of the n output bits is a function of n-log n input bits.
Furthermore, we rule out constructions of non-malleable codes for certain classes ℱ via reductions to the assumption that a distributional problem is hard for ℱ, that make black-box use of the tampering functions in the proof. In particular, this yields concrete obstacles for the construction of efficient codes for NC, even assuming average-case variants of P ⊈ NC.

BibTeX - Entry

  author =	{Marshall Ball and Dana Dachman-Soled and Mukul Kulkarni and Tal Malkin},
  title =	{{Limits to Non-Malleability}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{80:1--80:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Thomas Vidick},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-117657},
  doi =		{10.4230/LIPIcs.ITCS.2020.80},
  annote =	{Keywords: non-malleable codes, black-box impossibility, tamper-resilient cryptogtaphy, average-case hardness}

Keywords: non-malleable codes, black-box impossibility, tamper-resilient cryptogtaphy, average-case hardness
Collection: 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)
Issue Date: 2020
Date of publication: 06.01.2020

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI