License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2023.21
URN: urn:nbn:de:0030-drops-176737
Go to the corresponding LIPIcs Volume Portal

Chede, Sravanthi ; Shukla, Anil

Extending Merge Resolution to a Family of QBF-Proof Systems

LIPIcs-STACS-2023-21.pdf (1 MB)


Merge Resolution (MRes [Olaf Beyersdorff et al., 2021]) is a recently introduced proof system for false QBFs. Unlike other known QBF proof systems, it builds winning strategies for the universal player (countermodels) within the proofs as merge maps. Merge maps are deterministic branching programs in which isomorphism checking is efficient, as a result MRes is a polynomial time verifiable proof system.
In this paper, we introduce a family of proof systems MRes-ℛ in which the information of countermodels are stored in any pre-fixed complete representation ℛ. Hence, corresponding to each possible complete representation ℛ, we have a sound and refutationally complete QBF-proof system in MRes-ℛ. To handle these arbitrary representations, we introduce consistency checking rules in MRes-ℛ instead of the isomorphism checking in MRes. As a result these proof systems are not polynomial time verifiable (Non-P). Consequently, the paper shows that using merge maps is too restrictive and with a slight change in rules, it can be replaced with arbitrary representations leading to several interesting proof systems.
We relate these new systems with the implicit proof system from the algorithm in [Joshua Blinkhorn et al., 2021], which was designed to solve DQBFs (Dependency QBFs) using clause-strategy pairs like MRes. We use the OBDD (Ordered Binary Decision Diagrams) representation suggested in [Joshua Blinkhorn et al., 2021] and deduce that "Ordered" versions of the proof systems in MRes-ℛ are indeed polynomial time verifiable.
On the lower bound side, we lift the lower bound result of regular MRes ([Olaf Beyersdorff et al., 2020]) by showing that the completion principle formulas (CR_n) from [Mikolás Janota and João Marques-Silva, 2015] which are shown to be hard for regular MRes in [Olaf Beyersdorff et al., 2020], are also hard for any regular proof system in MRes-ℛ. Thereby, the paper lifts the lower bound of regular MRes to an entire class of proof systems, which use various complete representations, including those undiscovered, instead of only merge maps. Thereby proving that the hardness of CR_n formulas is intact even after changing the weak isomorphism checking in MRes to the stronger consistency checking in MRes-ℛ.

BibTeX - Entry

  author =	{Chede, Sravanthi and Shukla, Anil},
  title =	{{Extending Merge Resolution to a Family of QBF-Proof Systems}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{21:1--21:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-176737},
  doi =		{10.4230/LIPIcs.STACS.2023.21},
  annote =	{Keywords: Proof complexity, QBFs, Merge Resolution, Simulation, Lower Bound}

Keywords: Proof complexity, QBFs, Merge Resolution, Simulation, Lower Bound
Collection: 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)
Issue Date: 2023
Date of publication: 03.03.2023

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI