License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2022.54
URN: urn:nbn:de:0030-drops-163950
Go to the corresponding LIPIcs Volume Portal

Ding, Ming ; Kyng, Rasmus ; Zhang, Peng

Two-Commodity Flow Is Equivalent to Linear Programming Under Nearly-Linear Time Reductions

LIPIcs-ICALP-2022-54.pdf (1 MB)


We give a nearly-linear time reduction that encodes any linear program as a 2-commodity flow problem with only a small blow-up in size. Under mild assumptions similar to those employed by modern fast solvers for linear programs, our reduction causes only a polylogarithmic multiplicative increase in the size of the program, and runs in nearly-linear time. Our reduction applies to high-accuracy approximation algorithms and exact algorithms. Given an approximate solution to the 2-commodity flow problem, we can extract a solution to the linear program in linear time with only a polynomial factor increase in the error. This implies that any algorithm that solves the 2-commodity flow problem can solve linear programs in essentially the same time. Given a directed graph with edge capacities and two source-sink pairs, the goal of the 2-commodity flow problem is to maximize the sum of the flows routed between the two source-sink pairs subject to edge capacities and flow conservation. A 2-commodity flow problem can be formulated as a linear program, which can be solved to high accuracy in almost the current matrix multiplication time (Cohen-Lee-Song JACM'21). Our reduction shows that linear programs can be approximately solved, to high accuracy, using 2-commodity flow as well.
Our proof follows the outline of Itai’s polynomial-time reduction of a linear program to a 2-commodity flow problem (JACM’78). Itai’s reduction shows that exactly solving 2-commodity flow and exactly solving linear programming are polynomial-time equivalent. We improve Itai’s reduction to nearly preserve the problem representation size in each step. In addition, we establish an error bound for approximately solving each intermediate problem in the reduction, and show that the accumulated error is polynomially bounded. We remark that our reduction does not run in strongly polynomial time and that it is open whether 2-commodity flow and linear programming are equivalent in strongly polynomial time.

BibTeX - Entry

  author =	{Ding, Ming and Kyng, Rasmus and Zhang, Peng},
  title =	{{Two-Commodity Flow Is Equivalent to Linear Programming Under Nearly-Linear Time Reductions}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{54:1--54:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-163950},
  doi =		{10.4230/LIPIcs.ICALP.2022.54},
  annote =	{Keywords: Two-Commodity Flow Problems, Linear Programming, Fine-Grained Complexity}

Keywords: Two-Commodity Flow Problems, Linear Programming, Fine-Grained Complexity
Collection: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Issue Date: 2022
Date of publication: 28.06.2022

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI