License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.OPODIS.2022.3
URN: urn:nbn:de:0030-drops-176232
URL: https://drops.dagstuhl.de/opus/volltexte/2023/17623/
Go to the corresponding LIPIcs Volume Portal


Tixeuil, S├ębastien

Realistic Self-Stabilization (Invited Talk)

pdf-format:
LIPIcs-OPODIS-2022-3.pdf (0.3 MB)


Abstract

It is almost fifty years since Dijkstra coined the term "self-stabilization" to denote a distributed system able to recover correct behavior starting from any arbitrary (even unreachable) configuration. His seminal paper triggered many works since then, exploring over the years new variants of the original concept, new application domains, and new complexity results. While the huge majority of those contributions relates to theory, considering computability and worst case complexity issues, this talk revisits old and recent contributions from the prism of "realistic" distributed systems, aiming to address the following question: is self-stabilization relevant in practice for distributed systems?

BibTeX - Entry

@InProceedings{tixeuil:LIPIcs.OPODIS.2022.3,
  author =	{Tixeuil, S\'{e}bastien},
  title =	{{Realistic Self-Stabilization}},
  booktitle =	{26th International Conference on Principles of Distributed Systems (OPODIS 2022)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-265-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{253},
  editor =	{Hillel, Eshcar and Palmieri, Roberto and Rivi\`{e}re, Etienne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/17623},
  URN =		{urn:nbn:de:0030-drops-176232},
  doi =		{10.4230/LIPIcs.OPODIS.2022.3},
  annote =	{Keywords: Self-stabilization, Distributed systems, Probable stabilization, Performance evaluation, Asynchronous message passing, Multi-tolerance}
}

Keywords: Self-stabilization, Distributed systems, Probable stabilization, Performance evaluation, Asynchronous message passing, Multi-tolerance
Collection: 26th International Conference on Principles of Distributed Systems (OPODIS 2022)
Issue Date: 2023
Date of publication: 15.02.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI