License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2022.19
URN: urn:nbn:de:0030-drops-168173
URL: https://drops.dagstuhl.de/opus/volltexte/2022/16817/
Go to the corresponding LIPIcs Volume Portal


Bhyravarapu, Sriram ; Kalyanasundaram, Subrahmanyam ; Mathew, Rogers

Conflict-Free Coloring on Claw-Free Graphs and Interval Graphs

pdf-format:
LIPIcs-MFCS-2022-19.pdf (0.7 MB)


Abstract

A Conflict-Free Open Neighborhood coloring, abbreviated CFON^* coloring, of a graph G = (V,E) using k colors is an assignment of colors from a set of k colors to a subset of vertices of V(G) such that every vertex sees some color exactly once in its open neighborhood. The minimum k for which G has a CFON^* coloring using k colors is called the CFON^* chromatic number of G, denoted by χ_{ON}^*(G). The analogous notion for closed neighborhood is called CFCN^* coloring and the analogous parameter is denoted by χ_{CN}^*(G). The problem of deciding whether a given graph admits a CFON^* (or CFCN^*) coloring that uses k colors is NP-complete. Below, we describe briefly the main results of this paper.
- For k ≥ 3, we show that if G is a K_{1,k}-free graph then χ_{ON}^*(G) = O(k²log Δ), where Δ denotes the maximum degree of G. Dębski and Przybyło in [J. Graph Theory, 2021] had shown that if G is a line graph, then χ_{CN}^*(G) = O(log Δ). As an open question, they had asked if their result could be extended to claw-free (K_{1,3}-free) graphs, which are a superclass of line graphs. Since it is known that the CFCN^* chromatic number of a graph is at most twice its CFON^* chromatic number, our result positively answers the open question posed by Dębski and Przybyło.
- We show that if the minimum degree of any vertex in G is Ω(Δ/{log^ε Δ}) for some ε ≥ 0, then χ_{ON}^*(G) = O(log^{1+ε}Δ). This is a generalization of the result given by Dębski and Przybyło in the same paper where they showed that if the minimum degree of any vertex in G is Ω(Δ), then χ_{ON}^*(G)= O(logΔ).
- We give a polynomial time algorithm to compute χ_{ON}^*(G) for interval graphs G. This answers in positive the open question posed by Reddy [Theoretical Comp. Science, 2018] to determine whether the CFON^* chromatic number can be computed in polynomial time on interval graphs.
- We explore biconvex graphs, a subclass of bipartite graphs and give a polynomial time algorithm to compute their CFON^* chromatic number. This is interesting as Abel et al. [SIDMA, 2018] had shown that it is NP-complete to decide whether a planar bipartite graph G has χ_{ON}^*(G) = k where k ∈ {1, 2, 3}.

BibTeX - Entry

@InProceedings{bhyravarapu_et_al:LIPIcs.MFCS.2022.19,
  author =	{Bhyravarapu, Sriram and Kalyanasundaram, Subrahmanyam and Mathew, Rogers},
  title =	{{Conflict-Free Coloring on Claw-Free Graphs and Interval Graphs}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{19:1--19:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16817},
  URN =		{urn:nbn:de:0030-drops-168173},
  doi =		{10.4230/LIPIcs.MFCS.2022.19},
  annote =	{Keywords: Conflict-free coloring, Interval graphs, Bipartite graphs, Claw-free graphs}
}

Keywords: Conflict-free coloring, Interval graphs, Bipartite graphs, Claw-free graphs
Collection: 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)
Issue Date: 2022
Date of publication: 22.08.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI