License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SEA.2020.19
URN: urn:nbn:de:0030-drops-120938
Go to the corresponding LIPIcs Volume Portal

Trimble, James

An Algorithm for the Exact Treedepth Problem

LIPIcs-SEA-2020-19.pdf (0.5 MB)


We present a novel algorithm for the minimum-depth elimination tree problem, which is equivalent to the optimal treedepth decomposition problem. Our algorithm makes use of two cheaply-computed lower bound functions to prune the search tree, along with symmetry-breaking and domination rules. We present an empirical study showing that the algorithm outperforms the current state-of-the-art solver (which is based on a SAT encoding) by orders of magnitude on a range of graph classes.

BibTeX - Entry

  author =	{James Trimble},
  title =	{{An Algorithm for the Exact Treedepth Problem}},
  booktitle =	{18th International Symposium on Experimental Algorithms (SEA 2020)},
  pages =	{19:1--19:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-148-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{160},
  editor =	{Simone Faro and Domenico Cantone},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-120938},
  doi =		{10.4230/LIPIcs.SEA.2020.19},
  annote =	{Keywords: Treedepth, Elimination Tree, Graph Algorithms}

Keywords: Treedepth, Elimination Tree, Graph Algorithms
Collection: 18th International Symposium on Experimental Algorithms (SEA 2020)
Issue Date: 2020
Date of publication: 12.06.2020
Supplementary Material: Source code:

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI