License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2023.1
URN: urn:nbn:de:0030-drops-178518
URL: https://drops.dagstuhl.de/opus/volltexte/2023/17851/
Go to the corresponding LIPIcs Volume Portal


Abrahamsen, Mikkel ; Kleist, Linda ; Miltzow, Tillmann

Geometric Embeddability of Complexes Is ∃ℝ-Complete

pdf-format:
LIPIcs-SoCG-2023-1.pdf (2 MB)


Abstract

We show that the decision problem of determining whether a given (abstract simplicial) k-complex has a geometric embedding in ℝ^d is complete for the Existential Theory of the Reals for all d ≥ 3 and k ∈ {d-1,d}. Consequently, the problem is polynomial time equivalent to determining whether a polynomial equation system has a real solution and other important problems from various fields related to packing, Nash equilibria, minimum convex covers, the Art Gallery Problem, continuous constraint satisfaction problems, and training neural networks. Moreover, this implies NP-hardness and constitutes the first hardness result for the algorithmic problem of geometric embedding (abstract simplicial) complexes. This complements recent breakthroughs for the computational complexity of piece-wise linear embeddability.

BibTeX - Entry

@InProceedings{abrahamsen_et_al:LIPIcs.SoCG.2023.1,
  author =	{Abrahamsen, Mikkel and Kleist, Linda and Miltzow, Tillmann},
  title =	{{Geometric Embeddability of Complexes Is \exists\mathbb{R}-Complete}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{1:1--1:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/17851},
  URN =		{urn:nbn:de:0030-drops-178518},
  doi =		{10.4230/LIPIcs.SoCG.2023.1},
  annote =	{Keywords: simplicial complex, geometric embedding, linear embedding, hypergraph, recognition, existential theory of the reals}
}

Keywords: simplicial complex, geometric embedding, linear embedding, hypergraph, recognition, existential theory of the reals
Collection: 39th International Symposium on Computational Geometry (SoCG 2023)
Issue Date: 2023
Date of publication: 09.06.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI