License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2018.12
URN: urn:nbn:de:0030-drops-87259
Go to the corresponding LIPIcs Volume Portal

Bonnet, Édouard ; Giannopoulos, Panos ; Kim, Eun Jung ; Rzazewski, Pawel ; Sikora, Florian

QPTAS and Subexponential Algorithm for Maximum Clique on Disk Graphs

LIPIcs-SoCG-2018-12.pdf (0.5 MB)


A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for Maximum Clique on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics '90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show the rather surprising structural result that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those cycles is of odd length. From that, we derive the first QPTAS and subexponential algorithm running in time 2^{O~(n^{2/3})} for Maximum Clique on disk graphs. In stark contrast, Maximum Clique on intersection graphs of filled ellipses or filled triangles is unlikely to have such algorithms, even when the ellipses are close to unit disks. Indeed, we show that there is a constant ratio of approximation which cannot be attained even in time 2^{n^{1-epsilon}}, unless the Exponential Time Hypothesis fails.

BibTeX - Entry

  author =	{{\'E}douard Bonnet and Panos Giannopoulos and Eun Jung Kim and Pawel Rzazewski and Florian Sikora},
  title =	{{QPTAS and Subexponential Algorithm for Maximum Clique on Disk Graphs}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{12:1--12:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Bettina Speckmann and Csaba D. T{\'o}th},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-87259},
  doi =		{10.4230/LIPIcs.SoCG.2018.12},
  annote =	{Keywords: disk graph, maximum clique, computational complexity}

Keywords: disk graph, maximum clique, computational complexity
Collection: 34th International Symposium on Computational Geometry (SoCG 2018)
Issue Date: 2018
Date of publication: 08.06.2018

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI