License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CPM.2023.8
URN: urn:nbn:de:0030-drops-179624
Go to the corresponding LIPIcs Volume Portal

Charalampopoulos, Panagiotis ; Dudek, Bartłomiej ; Gawrychowski, Paweł ; Pokorski, Karol

Optimal Near-Linear Space Heaviest Induced Ancestors

LIPIcs-CPM-2023-8.pdf (0.8 MB)


We revisit the Heaviest Induced Ancestors (HIA) problem that was introduced by Gagie, Gawrychowski, and Nekrich [CCCG 2013] and has a number of applications in string algorithms. Let T₁ and T₂ be two rooted trees whose nodes have weights that are increasing in all root-to-leaf paths, and labels on the leaves, such that no two leaves of a tree have the same label. A pair of nodes (u, v) ∈ T₁ × T₂ is induced if and only if there is a label shared by leaf-descendants of u and v. In an HIA query, given nodes x ∈ T₁ and y ∈ T₂, the goal is to find an induced pair of nodes (u, v) of the maximum total weight such that u is an ancestor of x and v is an ancestor of y.
Let n be the upper bound on the sizes of the two trees. It is known that no data structure of size 𝒪̃(n) can answer HIA queries in o(log n / log log n) time [Charalampopoulos, Gawrychowski, Pokorski; ICALP 2020]. This (unconditional) lower bound is a polyloglog n factor away from the query time of the fastest 𝒪̃(n)-size data structure known to date for the HIA problem [Abedin, Hooshmand, Ganguly, Thankachan; Algorithmica 2022]. In this work, we resolve the query-time complexity of the HIA problem for the near-linear space regime by presenting a data structure that can be built in 𝒪̃(n) time and answers HIA queries in 𝒪(log n/log log n) time. As a direct corollary, we obtain an 𝒪̃(n)-size data structure that maintains the LCS of a static string and a dynamic string, both of length at most n, in time optimal for this space regime.
The main ingredients of our approach are fractional cascading and the utilization of an 𝒪(log n/ log log n)-depth tree decomposition. The latter allows us to break through the Ω(log n) barrier faced by previous works, due to the depth of the considered heavy-path decompositions.

BibTeX - Entry

  author =	{Charalampopoulos, Panagiotis and Dudek, Bart{\l}omiej and Gawrychowski, Pawe{\l} and Pokorski, Karol},
  title =	{{Optimal Near-Linear Space Heaviest Induced Ancestors}},
  booktitle =	{34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-276-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{259},
  editor =	{Bulteau, Laurent and Lipt\'{a}k, Zsuzsanna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-179624},
  doi =		{10.4230/LIPIcs.CPM.2023.8},
  annote =	{Keywords: data structures, string algorithms, fractional cascading}

Keywords: data structures, string algorithms, fractional cascading
Collection: 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)
Issue Date: 2023
Date of publication: 21.06.2023

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI