License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ISAAC.2022.33
URN: urn:nbn:de:0030-drops-173181
Go to the corresponding LIPIcs Volume Portal

Guo, Xiangyu ; Luo, Kelin ; Li, Shi ; Zhang, Yuhao

Minimizing the Maximum Flow Time in the Online Food Delivery Problem

LIPIcs-ISAAC-2022-33.pdf (0.9 MB)


We study a common delivery problem encountered in nowadays online food-ordering platforms: Customers order dishes online, and the restaurant delivers the food after receiving the order. Specifically, we study a problem where k vehicles of capacity c are serving a set of requests ordering food from one restaurant. After a request arrives, it can be served by a vehicle moving from the restaurant to its delivery location. We are interested in serving all requests while minimizing the maximum flow-time, i.e., the maximum time length a customer waits to receive his/her food after submitting the order.
We show that the problem is hard in both offline and online settings even when k = 1 and c = ∞: There is a hardness of approximation of Ω(n) for the offline problem, and a lower bound of Ω(n) on the competitive ratio of any online algorithm, where n is number of points in the metric.
We circumvent the strong negative results in two directions. Our main result is an O(1)-competitive online algorithm for the uncapacitated (i.e, c = ∞) food delivery problem on tree metrics; we also have negative result showing that the condition c = ∞ is needed. Then we explore the speed-augmentation model where our online algorithm is allowed to use vehicles with faster speed. We show that a moderate speeding factor leads to a constant competitive ratio, and we prove a tight trade-off between the speeding factor and the competitive ratio.

BibTeX - Entry

  author =	{Guo, Xiangyu and Luo, Kelin and Li, Shi and Zhang, Yuhao},
  title =	{{Minimizing the Maximum Flow Time in the Online Food Delivery Problem}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{33:1--33:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-173181},
  doi =		{10.4230/LIPIcs.ISAAC.2022.33},
  annote =	{Keywords: Online algorithm, Capacitated Vehicle Routing, Flow Time Optimization}

Keywords: Online algorithm, Capacitated Vehicle Routing, Flow Time Optimization
Collection: 33rd International Symposium on Algorithms and Computation (ISAAC 2022)
Issue Date: 2022
Date of publication: 14.12.2022

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI