License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2021.76
URN: urn:nbn:de:0030-drops-141450
Go to the corresponding LIPIcs Volume Portal

Gu, Yong ; Ren, Hanlin

Constructing a Distance Sensitivity Oracle in O(n^2.5794 M) Time

LIPIcs-ICALP-2021-76.pdf (0.9 MB)


We continue the study of distance sensitivity oracles (DSOs). Given a directed graph G with n vertices and edge weights in {1, 2, … , M}, we want to build a data structure such that given any source vertex u, any target vertex v, and any failure f (which is either a vertex or an edge), it outputs the length of the shortest path from u to v not going through f. Our main result is a DSO with preprocessing time O(n^2.5794 M) and constant query time. Previously, the best preprocessing time of DSOs for directed graphs is O(n^2.7233 M), and even in the easier case of undirected graphs, the best preprocessing time is O(n^2.6865 M) [Ren, ESA 2020]. One drawback of our DSOs, though, is that it only supports distance queries but not path queries.
Our main technical ingredient is an algorithm that computes the inverse of a degree-d polynomial matrix (i.e. a matrix whose entries are degree-d univariate polynomials) modulo x^r. The algorithm is adapted from [Zhou, Labahn and Storjohann, Journal of Complexity, 2015], and we replace some of its intermediate steps with faster rectangular matrix multiplication algorithms.
We also show how to compute unique shortest paths in a directed graph with edge weights in {1, 2, … , M}, in O(n^2.5286 M) time. This algorithm is crucial in the preprocessing algorithm of our DSO. Our solution improves the O(n^2.6865 M) time bound in [Ren, ESA 2020], and matches the current best time bound for computing all-pairs shortest paths.

BibTeX - Entry

  author =	{Gu, Yong and Ren, Hanlin},
  title =	{{Constructing a Distance Sensitivity Oracle in O(n^2.5794 M) Time}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{76:1--76:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-141450},
  doi =		{10.4230/LIPIcs.ICALP.2021.76},
  annote =	{Keywords: graph theory, shortest paths, distance sensitivity oracles}

Keywords: graph theory, shortest paths, distance sensitivity oracles
Collection: 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)
Issue Date: 2021
Date of publication: 02.07.2021

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI