License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CP.2023.39
URN: urn:nbn:de:0030-drops-190760
URL: https://drops.dagstuhl.de/opus/volltexte/2023/19076/
Go to the corresponding LIPIcs Volume Portal


Zhang, Tianwei ; Szeider, Stefan

Searching for Smallest Universal Graphs and Tournaments with SAT

pdf-format:
LIPIcs-CP-2023-39.pdf (0.9 MB)


Abstract

A graph is induced k-universal if it contains all graphs of order k as an induced subgraph. For over half a century, the question of determining smallest k-universal graphs has been studied. A related question asks for a smallest k-universal tournament containing all tournaments of order k.
This paper proposes and compares SAT-based methods for answering these questions exactly for small values of k. Our methods scale to values for which a generate-and-test approach isn't feasible; for instance, we show that an induced 7-universal graph has more than 16 vertices, whereas the number of all connected graphs on 16 vertices, modulo isomorphism, is a number with 23 decimal digits Our methods include static and dynamic symmetry breaking and lazy encodings, employing external subgraph isomorphism testing.

BibTeX - Entry

@InProceedings{zhang_et_al:LIPIcs.CP.2023.39,
  author =	{Zhang, Tianwei and Szeider, Stefan},
  title =	{{Searching for Smallest Universal Graphs and Tournaments with SAT}},
  booktitle =	{29th International Conference on Principles and Practice of Constraint Programming (CP 2023)},
  pages =	{39:1--39:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-300-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{280},
  editor =	{Yap, Roland H. C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/19076},
  URN =		{urn:nbn:de:0030-drops-190760},
  doi =		{10.4230/LIPIcs.CP.2023.39},
  annote =	{Keywords: Constrained-based combinatorics, synthesis problems, symmetry breaking, SAT solving, subgraph isomorphism, tournament, directed graphs}
}

Keywords: Constrained-based combinatorics, synthesis problems, symmetry breaking, SAT solving, subgraph isomorphism, tournament, directed graphs
Collection: 29th International Conference on Principles and Practice of Constraint Programming (CP 2023)
Issue Date: 2023
Date of publication: 22.09.2023
Supplementary Material: Software: https://doi.org/10.5281/zenodo.8147732


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI