License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2022.26
URN: urn:nbn:de:0030-drops-160349
Go to the corresponding LIPIcs Volume Portal

Chaplick, Steven ; Di Giacomo, Emilio ; Frati, Fabrizio ; Ganian, Robert ; Raftopoulou, Chrysanthi N. ; Simonov, Kirill

Parameterized Algorithms for Upward Planarity

LIPIcs-SoCG-2022-26.pdf (1 MB)


We obtain new parameterized algorithms for the classical problem of determining whether a directed acyclic graph admits an upward planar drawing. Our results include a new fixed-parameter algorithm parameterized by the number of sources, an XP-algorithm parameterized by treewidth, and a fixed-parameter algorithm parameterized by treedepth. All three algorithms are obtained using a novel framework for the problem that combines SPQR tree-decompositions with parameterized techniques. Our approach unifies and pushes beyond previous tractability results for the problem on series-parallel digraphs, single-source digraphs and outerplanar digraphs.

BibTeX - Entry

  author =	{Chaplick, Steven and Di Giacomo, Emilio and Frati, Fabrizio and Ganian, Robert and Raftopoulou, Chrysanthi N. and Simonov, Kirill},
  title =	{{Parameterized Algorithms for Upward Planarity}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{26:1--26:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-160349},
  doi =		{10.4230/LIPIcs.SoCG.2022.26},
  annote =	{Keywords: Upward planarity, parameterized algorithms, SPQR trees, treewidth, treedepth}

Keywords: Upward planarity, parameterized algorithms, SPQR trees, treewidth, treedepth
Collection: 38th International Symposium on Computational Geometry (SoCG 2022)
Issue Date: 2022
Date of publication: 01.06.2022

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI