License: Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license (CC BY-NC-ND 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2012.160
URN: urn:nbn:de:0030-drops-33952
Go to the corresponding LIPIcs Volume Portal

Bärtschi, Andreas ; Suri, Subhash

Conflict-free Chromatic Art Gallery Coverage

11.pdf (0.6 MB)


We consider a chromatic variant of the art gallery problem, where each
guard is assigned one of k distinct colors. A placement of such colored guards is conflict-free if each point of the polygon is seen
by some guard whose color appears exactly once among the guards visible to that point. What is the smallest number k(n) of colors that
ensure a conflict-free covering of all n-vertex polygons? We call this
the conflict-free chromatic art gallery problem. The problem is motivated by applications in distributed robotics and wireless sensor
networks where colors indicate the wireless frequencies assigned to a
set of covering "landmarks" in the environment so that a mobile robot
can always communicate with at least one landmark in its line-of-sight
range without interference.

Our main result shows that k(n) is O(log n) for orthogonal and for
monotone polygons, and O(log^2 n) for arbitrary simple polygons. By
contrast, if all guards visible from each point must have distinct
colors, then k(n)is Omega(n) for arbitrary simple polygons and Omega(sqrt(n)) for orthogonal polygons, as shown by Erickson and LaValle [Proc. of RSS 2011].

BibTeX - Entry

  author =	{Andreas  B{\"a}rtschi and Subhash Suri},
  title =	{{Conflict-free Chromatic Art Gallery Coverage}},
  booktitle =	{29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)},
  pages =	{160--171},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-35-4},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{14},
  editor =	{Christoph D{\"u}rr and Thomas Wilke},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-33952},
  doi =		{10.4230/LIPIcs.STACS.2012.160},
  annote =	{Keywords: art gallery problem, conflict-free coloring, visibility}

Keywords: art gallery problem, conflict-free coloring, visibility
Collection: 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)
Issue Date: 2012
Date of publication: 24.02.2012

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI