License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2023.39
URN: urn:nbn:de:0030-drops-188641
URL: https://drops.dagstuhl.de/opus/volltexte/2023/18864/
Go to the corresponding LIPIcs Volume Portal


Chen, Xi ; Jin, Yaonan ; Randolph, Tim ; Servedio, Rocco A.

Subset Sum in Time 2^{n/2} / poly(n)

pdf-format:
LIPIcs-APPROX39.pdf (1.0 MB)


Abstract

A major goal in the area of exact exponential algorithms is to give an algorithm for the (worst-case) n-input Subset Sum problem that runs in time 2^{(1/2 - c)n} for some constant c > 0. In this paper we give a Subset Sum algorithm with worst-case running time O(2^{n/2} ⋅ n^{-γ}) for a constant γ > 0.5023 in standard word RAM or circuit RAM models. To the best of our knowledge, this is the first improvement on the classical "meet-in-the-middle" algorithm for worst-case Subset Sum, due to Horowitz and Sahni, which can be implemented in time O(2^{n/2}) in these memory models [Horowitz and Sahni, 1974].
Our algorithm combines a number of different techniques, including the "representation method" introduced by Howgrave-Graham and Joux [Howgrave-Graham and Joux, 2010] and subsequent adaptations of the method in Austrin, Kaski, Koivisto, and Nederlof [Austrin et al., 2016], and Nederlof and Węgrzycki [Jesper Nederlof and Karol Wegrzycki, 2021], and "bit-packing" techniques used in the work of Baran, Demaine, and Pǎtraşcu [Baran et al., 2005] on subquadratic algorithms for 3SUM.

BibTeX - Entry

@InProceedings{chen_et_al:LIPIcs.APPROX/RANDOM.2023.39,
  author =	{Chen, Xi and Jin, Yaonan and Randolph, Tim and Servedio, Rocco A.},
  title =	{{Subset Sum in Time 2^\{n/2\} / poly(n)}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{39:1--39:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2023/18864},
  URN =		{urn:nbn:de:0030-drops-188641},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.39},
  annote =	{Keywords: Exact algorithms, subset sum, log shaving}
}

Keywords: Exact algorithms, subset sum, log shaving
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)
Issue Date: 2023
Date of publication: 04.09.2023


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI