License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SWAT.2020.11
URN: urn:nbn:de:0030-drops-122582
Go to the corresponding LIPIcs Volume Portal

Bercea, Ioana O. ; Even, Guy

A Dynamic Space-Efficient Filter with Constant Time Operations

LIPIcs-SWAT-2020-11.pdf (0.5 MB)


A dynamic dictionary is a data structure that maintains sets of cardinality at most n from a given universe and supports insertions, deletions, and membership queries. A filter approximates membership queries with a one-sided error that occurs with probability at most ε. The goal is to obtain dynamic filters that are space-efficient (the space is 1+o(1) times the information-theoretic lower bound) and support all operations in constant time with high probability. One approach to designing filters is to reduce to the retrieval problem. When the size of the universe is polynomial in n, this approach yields a space-efficient dynamic filter as long as the error parameter ε satisfies log(1/ε) = ω(log log n). For the case that log(1/ε) = O(log log n), we present the first space-efficient dynamic filter with constant time operations in the worst case (whp). In contrast, the space-efficient dynamic filter of Pagh et al. [Anna Pagh et al., 2005] supports insertions and deletions in amortized expected constant time. Our approach employs the classic reduction of Carter et al. [Carter et al., 1978] on a new type of dictionary construction that supports random multisets.

BibTeX - Entry

  author =	{Ioana O. Bercea and Guy Even},
  title =	{{A Dynamic Space-Efficient Filter with Constant Time Operations}},
  booktitle =	{17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)},
  pages =	{11:1--11:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-150-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{162},
  editor =	{Susanne Albers},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-122582},
  doi =		{10.4230/LIPIcs.SWAT.2020.11},
  annote =	{Keywords: Data Structures}

Keywords: Data Structures
Collection: 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)
Issue Date: 2020
Date of publication: 12.06.2020

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI