License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2020.61
URN: urn:nbn:de:0030-drops-127297
Go to the corresponding LIPIcs Volume Portal

Kuske, Dietrich ; Schwarz, Christian

Complexity of Counting First-Order Logic for the Subword Order

LIPIcs-MFCS-2020-61.pdf (0.4 MB)


This paper considers the structure consisting of the set of all words over a given alphabet together with the subword relation, regular predicates, and constants for every word. We are interested in the counting extension of first-order logic by threshold counting quantifiers. The main result shows that the two-variable fragment of this logic can be decided in two-fold exponential space provided the regular predicates are restricted to piecewise testable ones. This result improves prior insights by Karandikar and Schnoebelen by extending the logic and saving one exponent. Its proof consists of two main parts: First, we provide a quantifier elimination procedure that results in a formula with constants of bounded length (this generalizes the procedure by Karandikar and Schnoebelen for first-order logic). From this, it follows that quantification in formulas can be restricted to words of bounded length, i.e., the second part of the proof is an adaptation of the method by Ferrante and Rackoff to counting logic and deviates significantly from the path of reasoning by Karandikar and Schnoebelen.

BibTeX - Entry

  author =	{Dietrich Kuske and Christian Schwarz},
  title =	{{Complexity of Counting First-Order Logic for the Subword Order}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{61:1--61:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Javier Esparza and Daniel Kr{\'a}ΔΎ},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-127297},
  doi =		{10.4230/LIPIcs.MFCS.2020.61},
  annote =	{Keywords: Counting logic, piecewise testable languages}

Keywords: Counting logic, piecewise testable languages
Collection: 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)
Issue Date: 2020
Date of publication: 18.08.2020

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI