License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.DISC.2021.44
URN: urn:nbn:de:0030-drops-148468
Go to the corresponding LIPIcs Volume Portal

Alpos, Orestis ; Cachin, Christian ; Zanolini, Luca

Brief Announcement: How to Trust Strangers - Composition of Byzantine Quorum Systems

LIPIcs-DISC-2021-44.pdf (0.4 MB)


Trust is the basis of any distributed, fault-tolerant, or secure system. A trust assumption specifies the failures that a system, such as a blockchain network, can tolerate and determines the conditions under which it operates correctly. In systems subject to Byzantine faults, the trust assumption is usually specified through sets of processes that may fail together. Trust has traditionally been symmetric, such that all processes in the system adhere to the same, global assumption about potential faults. Recently, asymmetric trust models have also been considered, especially in the context of blockchains, where every participant is free to choose who to trust.
In both cases, it is an open question how to compose trust assumptions. Consider two or more systems, run by different and possibly disjoint sets of participants, with different assumptions about faults: how can they work together? This work answers this question for the first time and offers composition rules for symmetric and for asymmetric quorum systems. These rules are static and do not require interaction or agreement on the new trust assumption among the participants. Moreover, they ensure that if the original systems allow for running a particular protocol (guaranteeing consistency and availability), then so will the joint system. At the same time, the composed system tolerates as many faults as possible, subject to the underlying consistency and availability properties.
Reaching consensus with asymmetric trust in the model of personal Byzantine quorum systems (Losa et al., DISC 2019) was shown to be impossible, if the trust assumptions of the processes diverge from each other. With asymmetric quorum systems, and by applying our composition rule, we show how consensus is actually possible, even with the combination of disjoint sets of processes.

BibTeX - Entry

  author =	{Alpos, Orestis and Cachin, Christian and Zanolini, Luca},
  title =	{{Brief Announcement: How to Trust Strangers - Composition of Byzantine Quorum Systems}},
  booktitle =	{35th International Symposium on Distributed Computing (DISC 2021)},
  pages =	{44:1--44:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-210-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{209},
  editor =	{Gilbert, Seth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-148468},
  doi =		{10.4230/LIPIcs.DISC.2021.44},
  annote =	{Keywords: Byzantine quorum systems, composition of quorum systems, trust models, asymmetric trust}

Keywords: Byzantine quorum systems, composition of quorum systems, trust models, asymmetric trust
Collection: 35th International Symposium on Distributed Computing (DISC 2021)
Issue Date: 2021
Date of publication: 04.10.2021

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI