License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2016.34
URN: urn:nbn:de:0030-drops-58288
Go to the corresponding LIPIcs Volume Portal

Kumar, Mrinal ; Saraf, Shubhangi

Arithmetic Circuits with Locally Low Algebraic Rank

7.pdf (0.7 MB)


In recent years there has been a flurry of activity proving lower bounds for homogeneous depth-4 arithmetic circuits, which has brought us very close to statements that are known to imply VP != VNP. It is a big question to go beyond homogeneity, and in this paper we make progress towards this by considering depth-4 circuits of low algebraic rank, which are a natural extension of homogeneous depth-4 arithmetic circuits.

A depth-4 circuit is a representation of an N-variate, degree n polynomial P as P = sum_{i=1}^T Q_{i1} * Q_{i2} * ... * Q_{it} where the Q_{ij} are given by their monomial expansion. Homogeneity adds the constraint that for every i in [T], sum_{j} degree(Q_{ij}) = n. We study an extension where, for every i in [T], the algebraic rank of the set of polynomials {Q_{i1}, Q_{i2}, ... ,Q_{it}} is at most some parameter k. We call this the class of spnew circuits. Already for k=n, these circuits are a strong generalization of the class of homogeneous depth-4 circuits, where in particular t<=n (and hence k<=n).

We study lower bounds and polynomial identity tests for such circuits and prove the following results.

1. Lower bounds: We give an explicit family of polynomials {P_n} of degree n in N = n^{O(1)} variables in VNP, such that any spnewn circuit computing P_n has size at least exp{(Omega(sqrt(n)*log(N)))}. This strengthens and unifies two lines of work: it generalizes the recent exponential lower bounds for homogeneous depth-4 circuits [KLSS14, KS-full] as well as the Jacobian based lower bounds of Agrawal et al. which worked for spnew circuits in the restricted setting where T * k <= n.

2. Hitting sets: Let spnewbounded be the class of spnew circuits with bottom fan-in at most d. We show that if d and k are at most poly(log(N)), then there is an explicit hitting set for spnewbounded circuits of size quasipolynomial in N and the size of the circuit. This strengthens a result of Forbes which showed such quasipolynomial sized hitting sets in the setting where d and t are at most poly(log(N)).

A key technical ingredient of the proofs is a result which states that over any field of characteristic zero (or sufficiently large characteristic), upto a translation, every polynomial in a set of algebraically dependent polynomials can be written as a function of the polynomials in the transcendence basis. We believe this may be of independent interest. We combine this with shifted partial derivative based methods to obtain our final results.

BibTeX - Entry

  author =	{Mrinal Kumar and Shubhangi Saraf},
  title =	{{Arithmetic Circuits with Locally Low Algebraic Rank}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{34:1--34:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Ran Raz},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-58288},
  doi =		{10.4230/LIPIcs.CCC.2016.34},
  annote =	{Keywords: algebraic independence, arithmetic circuits, lower bounds}

Keywords: algebraic independence, arithmetic circuits, lower bounds
Collection: 31st Conference on Computational Complexity (CCC 2016)
Issue Date: 2016
Date of publication: 19.05.2016

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI