License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.OPODIS.2016.4
URN: urn:nbn:de:0030-drops-70736
Go to the corresponding LIPIcs Volume Portal

Ellen, Faith

Participating Sets, Simulations, and the Consensus Hierarchy (Keynote Abstract)

LIPIcs-OPODIS-2016-4.pdf (0.2 MB)


The participating set problem can be solved in an asynchronous system using only registers. I will gently explain this problem and its solution, followed by a new extension, called consistent ordered partition. Next, I will present a wait-free simulation by f + 1 processes of any setconsensus algorithm that tolerates f faults. I will also describe how to extend this simulation using consistent ordered partition. Finally, I will discuss how this extension can be used to prove that, within every level m > 1 of the consensus hierarchy, there is an infinite sequence of increasingly more powerful deterministic objects.

BibTeX - Entry

  author =	{Faith Ellen},
  title =	{{Participating Sets, Simulations, and the Consensus Hierarchy (Keynote Abstract)}},
  booktitle =	{20th International Conference on Principles of Distributed Systems (OPODIS 2016)},
  pages =	{4:1--4:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-031-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{70},
  editor =	{Panagiota Fatourou and Ernesto Jim{\'e}nez and Fernando Pedone},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-70736},
  doi =		{10.4230/LIPIcs.OPODIS.2016.4},
  annote =	{Keywords: Consensus, shared-memory systems}

Keywords: Consensus, shared-memory systems
Collection: 20th International Conference on Principles of Distributed Systems (OPODIS 2016)
Issue Date: 2017
Date of publication: 06.04.2017

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI