License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2021.56
URN: urn:nbn:de:0030-drops-147499
Go to the corresponding LIPIcs Volume Portal

Bhandari, Siddharth ; Harsha, Prahladh ; Kumar, Mrinal ; Sudan, Madhu

Ideal-Theoretic Explanation of Capacity-Achieving Decoding

LIPIcs-APPROX56.pdf (0.8 MB)


In this work, we present an abstract framework for some algebraic error-correcting codes with the aim of capturing codes that are list-decodable to capacity, along with their decoding algorithm. In the polynomial ideal framework, a code is specified by some ideals in a polynomial ring, messages are polynomials and their encoding is the residue modulo the ideals. We present an alternate way of viewing this class of codes in terms of linear operators, and show that this alternate view makes their algorithmic list-decodability amenable to analysis.
Our framework leads to a new class of codes that we call affine Folded Reed-Solomon codes (which are themselves a special case of the broader class we explore). These codes are common generalizations of the well-studied Folded Reed-Solomon codes and Univariate Multiplicity codes, while also capturing the less-studied Additive Folded Reed-Solomon codes as well as a large family of codes that were not previously known/studied.
More significantly our framework also captures the algorithmic list-decodability of the constituent codes. Specifically, we present a unified view of the decoding algorithm for ideal-theoretic codes and show that the decodability reduces to the analysis of the distance of some related codes. We show that good bounds on this distance lead to capacity-achieving performance of the underlying code, providing a unifying explanation of known capacity-achieving results. In the specific case of affine Folded Reed-Solomon codes, our framework shows that they are list-decodable up to capacity (for appropriate setting of the parameters), thereby unifying the previous results for Folded Reed-Solomon, Multiplicity and Additive Folded Reed-Solomon codes.

BibTeX - Entry

  author =	{Bhandari, Siddharth and Harsha, Prahladh and Kumar, Mrinal and Sudan, Madhu},
  title =	{{Ideal-Theoretic Explanation of Capacity-Achieving Decoding}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{56:1--56:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-147499},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.56},
  annote =	{Keywords: List Decodability, List Decoding Capacity, Polynomial Ideal Codes, Multiplicity Codes, Folded Reed-Solomon Codes}

Keywords: List Decodability, List Decoding Capacity, Polynomial Ideal Codes, Multiplicity Codes, Folded Reed-Solomon Codes
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)
Issue Date: 2021
Date of publication: 15.09.2021

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI