License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.FSTTCS.2021.1
URN: urn:nbn:de:0030-drops-155124
URL: https://drops.dagstuhl.de/opus/volltexte/2021/15512/
Go to the corresponding LIPIcs Volume Portal


Aaronson, Scott

BQP After 28 Years (Invited Talk)

pdf-format:
LIPIcs-FSTTCS-2021-1.pdf (0.3 MB)


Abstract

I will discuss the now-ancient question of where BQP, Bounded-Error Quantum Polynomial-Time, fits in among classical complexity classes. After reviewing some basics from the 90s, I will discuss the Forrelation problem that I introduced in 2009 to yield an oracle separation between BQP and PH, and the dramatic completion of that program by Ran Raz and Avishay Tal in 2018. I will then discuss very recent work, with William Kretschmer and DeVon Ingram, which leverages the Raz-Tal theorem, along with a new "quantum-aware" random restriction method, to obtain results that illustrate just how differently BQP can behave from BPP. These include oracles relative to which NP^{BQP} ̸ ⊂ BQP^{PH} - solving a 2005 open problem of Lance Fortnow - and conversely, relative to which BQP^{NP} ̸ ⊂ PH^{BQP}; an oracle relative to which 𝖯 = NP and yet BQP ≠ QCMA; an oracle relative to which NP ⊆ BQP yet PH is infinite; an oracle relative to which 𝖯 = NP≠ BQP = PP; and an oracle relative to which PP = PostBQP ̸ ⊂ QMA^{QMA^{…}}. By popular demand, I will also speculate about the status of BQP in the unrelativized world.

BibTeX - Entry

@InProceedings{aaronson:LIPIcs.FSTTCS.2021.1,
  author =	{Aaronson, Scott},
  title =	{{BQP After 28 Years}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czy, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/15512},
  URN =		{urn:nbn:de:0030-drops-155124},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.1},
  annote =	{Keywords: quantum computing, complexity theory, oracle separations, circuit lower bounds}
}

Keywords: quantum computing, complexity theory, oracle separations, circuit lower bounds
Collection: 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)
Issue Date: 2021
Date of publication: 29.11.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI