License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.AofA.2020.5
URN: urn:nbn:de:0030-drops-120352
URL: https://drops.dagstuhl.de/opus/volltexte/2020/12035/
Go to the corresponding LIPIcs Volume Portal


Berzunza, Gabriel ; Cai, Xing Shi ; Holmgren, Cecilia

The k-Cut Model in Conditioned Galton-Watson Trees

pdf-format:
LIPIcs-AofA-2020-5.pdf (0.5 MB)


Abstract

The k-cut number of rooted graphs was introduced by Cai et al. [Cai and Holmgren, 2019] as a generalization of the classical cutting model by Meir and Moon [Meir and Moon, 1970]. In this paper, we show that all moments of the k-cut number of conditioned Galton-Watson trees converge after proper rescaling, which implies convergence in distribution to the same limit law regardless of the offspring distribution of the trees. This extends the result of Janson [Janson, 2006].

BibTeX - Entry

@InProceedings{berzunza_et_al:LIPIcs:2020:12035,
  author =	{Gabriel Berzunza and Xing Shi Cai and Cecilia Holmgren},
  title =	{{The k-Cut Model in Conditioned Galton-Watson Trees}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{5:1--5:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Michael Drmota and Clemens Heuberger},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12035},
  URN =		{urn:nbn:de:0030-drops-120352},
  doi =		{10.4230/LIPIcs.AofA.2020.5},
  annote =	{Keywords: k-cut, cutting, conditioned Galton-Watson trees}
}

Keywords: k-cut, cutting, conditioned Galton-Watson trees
Collection: 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)
Issue Date: 2020
Date of publication: 10.06.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI