License:
Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2018.69
URN: urn:nbn:de:0030-drops-87820
URL: https://drops.dagstuhl.de/opus/volltexte/2018/8782/
Roche-Newton, Oliver
An Improved Bound for the Size of the Set A/A+A
Abstract
It is established that for any finite set of positive real numbers A, we have |A/A+A| >> |A|^{3/2+1/26} / log^{5/6}|A|.
BibTeX - Entry
@InProceedings{rochenewton:LIPIcs:2018:8782,
author = {Oliver Roche-Newton},
title = {{An Improved Bound for the Size of the Set A/A+A}},
booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)},
pages = {69:1--69:12},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-066-8},
ISSN = {1868-8969},
year = {2018},
volume = {99},
editor = {Bettina Speckmann and Csaba D. T{\'o}th},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2018/8782},
URN = {urn:nbn:de:0030-drops-87820},
doi = {10.4230/LIPIcs.SoCG.2018.69},
annote = {Keywords: sum-product estimates, expanders, incidence theorems, discrete geometry}
}
Keywords: |
|
sum-product estimates, expanders, incidence theorems, discrete geometry |
Collection: |
|
34th International Symposium on Computational Geometry (SoCG 2018) |
Issue Date: |
|
2018 |
Date of publication: |
|
08.06.2018 |