License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CONCUR.2019.10
URN: urn:nbn:de:0030-drops-109121
Go to the corresponding LIPIcs Volume Portal

Chistikov, Dmitry ; Murawski, Andrzej S. ; Purser, David

Asymmetric Distances for Approximate Differential Privacy

LIPIcs-CONCUR-2019-10.pdf (0.7 MB)


Differential privacy is a widely studied notion of privacy for various models of computation, based on measuring differences between probability distributions. We consider (epsilon,delta)-differential privacy in the setting of labelled Markov chains. For a given epsilon, the parameter delta can be captured by a variant of the total variation distance, which we call lv_{alpha} (where alpha = e^{epsilon}).
First we study lv_{alpha} directly, showing that it cannot be computed exactly. However, the associated approximation problem turns out to be in PSPACE and #P-hard. Next we introduce a new bisimilarity distance for bounding lv_{alpha} from above, which provides a tighter bound than previously known distances while remaining computable with the same complexity (polynomial time with an NP oracle). We also propose an alternative bound that can be computed in polynomial time. Finally, we illustrate the distances on case studies.

BibTeX - Entry

  author =	{Dmitry Chistikov and Andrzej S. Murawski and David Purser},
  title =	{{Asymmetric Distances for Approximate Differential Privacy}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{10:1--10:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Wan Fokkink and Rob van Glabbeek},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-109121},
  doi =		{10.4230/LIPIcs.CONCUR.2019.10},
  annote =	{Keywords: Bisimilarity distances, Differential privacy, Labelled Markov chains}

Keywords: Bisimilarity distances, Differential privacy, Labelled Markov chains
Collection: 30th International Conference on Concurrency Theory (CONCUR 2019)
Issue Date: 2019
Date of publication: 20.08.2019

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI