License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ISAAC.2016.54
URN: urn:nbn:de:0030-drops-68221
Go to the corresponding LIPIcs Volume Portal

Liu, Yangwei ; Ding, Hu ; Huang, Ziyun ; Xu, Jinhui

Distributed and Robust Support Vector Machine

LIPIcs-ISAAC-2016-54.pdf (2 MB)


In this paper, we consider the distributed version of Support Vector Machine (SVM) under the coordinator model, where all input data (i.e., points in R^d space) of SVM are arbitrarily distributed among k nodes in some network with a coordinator which can communicate with all nodes. We investigate two variants of this problem, with and without outliers. For distributed SVM without outliers, we prove a lower bound on the communication complexity and give a distributed (1-epsilon)-approximation algorithm to reach this lower bound, where epsilon is a user specified small constant. For distributed SVM with outliers, we present a (1-epsilon)-approximation algorithm to explicitly remove the influence of outliers. Our algorithm is based on a deterministic distributed top t selection algorithm with communication complexity of O(k log (t)) in the coordinator model. Experimental results on benchmark datasets confirm the theoretical guarantees of our algorithms.

BibTeX - Entry

  author =	{Yangwei Liu and Hu Ding and Ziyun Huang and Jinhui Xu},
  title =	{{Distributed and Robust Support Vector Machine}},
  booktitle =	{27th International Symposium on Algorithms and Computation (ISAAC 2016)},
  pages =	{54:1--54:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-026-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{64},
  editor =	{Seok-Hee Hong},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-68221},
  doi =		{10.4230/LIPIcs.ISAAC.2016.54},
  annote =	{Keywords: Distributed Algorithm, Communication Complexity, Robust Algorithm, SVM}

Keywords: Distributed Algorithm, Communication Complexity, Robust Algorithm, SVM
Collection: 27th International Symposium on Algorithms and Computation (ISAAC 2016)
Issue Date: 2016
Date of publication: 07.12.2016

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI