License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2020.94
URN: urn:nbn:de:0030-drops-125018
Go to the corresponding LIPIcs Volume Portal

Sandlund, Bryce ; Xu, Yinzhan

Faster Dynamic Range Mode

LIPIcs-ICALP-2020-94.pdf (0.5 MB)


In the dynamic range mode problem, we are given a sequence a of length bounded by N and asked to support element insertion, deletion, and queries for the most frequent element of a contiguous subsequence of a. In this work, we devise a deterministic data structure that handles each operation in worst-case Õ(N^0.655994) time, thus breaking the O(N^{2/3}) per-operation time barrier for this problem. The data structure is achieved by combining the ideas in Williams and Xu (SODA 2020) for batch range mode with a novel data structure variant of the Min-Plus product.

BibTeX - Entry

  author =	{Bryce Sandlund and Yinzhan Xu},
  title =	{{Faster Dynamic Range Mode}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{94:1--94:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Artur Czumaj and Anuj Dawar and Emanuela Merelli},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-125018},
  doi =		{10.4230/LIPIcs.ICALP.2020.94},
  annote =	{Keywords: Range Mode, Min-Plus Product}

Keywords: Range Mode, Min-Plus Product
Collection: 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)
Issue Date: 2020
Date of publication: 29.06.2020

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI