License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.AofA.2020.9
URN: urn:nbn:de:0030-drops-120390
URL: https://drops.dagstuhl.de/opus/volltexte/2020/12039/
Go to the corresponding LIPIcs Volume Portal


Chapon, François ; Fusy, Éric ; Raschel, Kilian

Polyharmonic Functions And Random Processes in Cones

pdf-format:
LIPIcs-AofA-2020-9.pdf (0.5 MB)


Abstract

We investigate polyharmonic functions associated to Brownian motions and random walks in cones. These are functions which cancel some power of the usual Laplacian in the continuous setting and of the discrete Laplacian in the discrete setting. We show that polyharmonic functions naturally appear while considering asymptotic expansions of the heat kernel in the Brownian case and in lattice walk enumeration problems. We provide a method to construct general polyharmonic functions through Laplace transforms and generating functions in the continuous and discrete cases, respectively. This is done by using a functional equation approach.

BibTeX - Entry

@InProceedings{chapon_et_al:LIPIcs:2020:12039,
  author =	{Fran{\c{c}}ois Chapon and {\'E}ric Fusy and Kilian Raschel},
  title =	{{Polyharmonic Functions And Random Processes in Cones}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{9:1--9:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Michael Drmota and Clemens Heuberger},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12039},
  URN =		{urn:nbn:de:0030-drops-120390},
  doi =		{10.4230/LIPIcs.AofA.2020.9},
  annote =	{Keywords: Brownian motion in cones, Heat kernel, Random walks in cones, Harmonic functions, Polyharmonic functions, Complete asymptotic expansions, Functional equations}
}

Keywords: Brownian motion in cones, Heat kernel, Random walks in cones, Harmonic functions, Polyharmonic functions, Complete asymptotic expansions, Functional equations
Collection: 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)
Issue Date: 2020
Date of publication: 10.06.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI