License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITC.2022.13
URN: urn:nbn:de:0030-drops-164910
URL: https://drops.dagstuhl.de/opus/volltexte/2022/16491/
Go to the corresponding LIPIcs Volume Portal


Rotem, Lior

Revisiting the Uber Assumption in the Algebraic Group Model: Fine-Grained Bounds in Hidden-Order Groups and Improved Reductions in Bilinear Groups

pdf-format:
LIPIcs-ITC-2022-13.pdf (0.6 MB)


Abstract

We prove strong security guarantees for a wide array of computational and decisional problems, both in hidden-order groups and in bilinear groups, within the algebraic group model (AGM) of Fuchsbauer, Kiltz and Loss (CRYPTO '18). As our first contribution, we put forth a new fine-grained variant of the Uber family of assumptions in hidden-order groups. This family includes in particular the repeated squaring function of Rivest, Shamir and Wagner, which underlies their time-lock puzzle as well as the main known candidates for verifiable delay functions; and a computational variant of the generalized BBS problem, which underlies the timed commitments of Boneh and Naor (CRYPTO '00). We then provide two results within a variant of the AGM, which show that the hardness of solving problems in this family in a less-than-trivial number of steps is implied by well-studied assumptions. The first reduction may be applied in any group (and in particular, class groups), and is to the RSA assumption; and our second reduction is in RSA groups with a modulus which is the product of two safe primes, and is to the factoring assumption.
Additionally, we prove that the hardness of any computational problem in the Uber family of problems in bilinear groups is implied by the hardness of the q-discrete logarithm problem. The parameter q in our reduction is the maximal degree in which a variable appears in the polynomials which define the specific problem within the Uber family. This improves upon a recent result of Bauer, Fuchsbauer and Loss (CRYPTO '20), who obtained a similar implication but for a parameter q which is lower bounded by the maximal total degree of one of the above polynomials. We discuss the implications of this improvement to prominent group key-exchange protocols.

BibTeX - Entry

@InProceedings{rotem:LIPIcs.ITC.2022.13,
  author =	{Rotem, Lior},
  title =	{{Revisiting the Uber Assumption in the Algebraic Group Model: Fine-Grained Bounds in Hidden-Order Groups and Improved Reductions in Bilinear Groups}},
  booktitle =	{3rd Conference on Information-Theoretic Cryptography (ITC 2022)},
  pages =	{13:1--13:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-238-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{230},
  editor =	{Dachman-Soled, Dana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16491},
  URN =		{urn:nbn:de:0030-drops-164910},
  doi =		{10.4230/LIPIcs.ITC.2022.13},
  annote =	{Keywords: Algebraic group model, Uber assumption, Bilinear groups, Hidden-order groups}
}

Keywords: Algebraic group model, Uber assumption, Bilinear groups, Hidden-order groups
Collection: 3rd Conference on Information-Theoretic Cryptography (ITC 2022)
Issue Date: 2022
Date of publication: 30.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI