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Abstract: Problems play an important role in 
mathematics instruction and are therefore 
frequently seen as central points of application 
for measures of instructional development. 
The research project “Quality of instruction and 
mathematical understanding in different cul-
tures” examines the cognitive level of practice 
problems and theory problems in a three-lesson 
unit on the Introduction to Pythagorean theo-
rem1: Analogously to the TIMSS 1999 video 
study, a differentiation was made between the 
cognitive level of problem statement and the 
cognitive level of problem implementation. Addi-
tionally, the lesson time was also divided into 
practice and theory segments. The results show 
that teachers with a high proportion of connec-
tion activities in practice segments do not neces-
sarily also spend a greater proportion of time on 
an analogous level for theory. 

ZDM-Classification: C33, D43 

1. Theoretical Background 
The presentation of theory is structured in two 
sections: First, problems will be described in 
general terms as central components of 
mathematics instruction (1.1). In a second part, 
problems will be analysed with regard to the 
thinking activities required (1.2). 

 
                                                           
1 This project is funded by the DGF (German Re-
search Foundation, KL 1057/3) and by Swiss nation-
al foundations (NFP33 project number 1114-63564. 
00/1). The project leaders are E. Klieme, C. Pauli and 
K. Reusser. 

1.1 Activities in mathematics instruction 

With recourse to the TIMSS 1999 video study 
(Hiebert et al., 2003; Jacobs et al., 2003) and to 
the works of Aebli (1994), three didactic 
functions can be distinguished that mark the 
different segments in mathematics instruction: 
The solving of practice problems, the develop-
ment of theory with problems, and the develop-
ment of theory without problems. In the current 
work, these three functions will be used to 
divide the instruction time into “theory segment” 
and “practice segment”. 
A typical feature of mathematics instruction is 
working on problems. In different international 
studies, it became clear that most of the instruc-
tion time is spent working on problems: Accord-
ing to the TIMSS 1999 video study (Hiebert et 
al., 2003), this aspect amounts to more than 80% 
of the instruction time. 
But what actually are “problems”? The defini-
tion used in the current study traces back to that 
of the TIMSS 1999 video study. “Problems 
comprise an explicit or implicit problem state-
ment, which contains an unknown aspect that 
has to be determined by using mathematical 
operations or mathematical thinking” (Hugener, 
Pauli & Reusser, 2006, p. 67). It is therefore im-
portant to take into account that in this article, 
“problems” cannot be equated with problematic, 
cognitively demanding and complex tasks. Sim-
ple tasks that can be solved through routine 
operations are also deemed as problems. The 
term “problems” used here should therefore be 
distinguished from the term “Problems” used in 
current German-language mathematical didac-
tics.  
In the framework of entire teaching and learning 
processes (Aebli, 1994), working on problems 
serves purposes both of building up new know-
ledge, and working through, practising and 
applying previously held knowledge. 
Accordingly, two types of problems can be 
distinguished in the sense of the definition pre-
sented above, which are called in the following 
“theory problems” and “practice problems”: 

1. “Theory problems”: Problems for con-
structing new knowledge (cf. problem-based 
construction of cognitive structures by 
Aebli, 1994). With the help of these prob-
lems, an unknown concept is first developed 
or discovered. This concept can be 
developed both in classwork segments and 
discovered independently by the students.  
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2. “Practice problems”: Problems for prac-
tising (in the sense of making automatic, 
ability to carry out quickly), consolidating, 
and applying and transferring previously 
held knowledge. 

In the TIMSS 1999 video study (Jacobs et al., 
2003), the complete instruction time was divided 
into “problem” and “non-problem” segments. 
Based on the aforementioned theoretical 
considerations, in the current study, a three-
segment classification of the complete instruc-
tion time was carried out (cf. Hugener et al., 
2006). The mathematical work was divided into 
the following activity facets (In detail, the 
classification is more complex than described 
here. For reasons of readability and compre-
hensibility, the complete coding method is not 
presented here. The exact method can be found 
in Hugener et al. (2006)): 

1. Practice problem: In the aforementioned 
sense, typical practice problems are solved. 

2. Theory: New terms and rules are introduced 
or repeated without problem statements. This 
facet also includes the formulation of a 
mathematical theorem in various forms of 
representation, the proving of Pythagorean 
theorem and the discussion of historical 
aspects.  

3. Theory problems: With the help of these 
problems, the unknown Pythagorean theorem 
is developed or discovered for the first time. 
This can be developed both in classwork and 
occur independently through the students. 
Theory problems take on an intermediate 
position between practice problems and 
theory. 

In this article, the facets of theory and theory 
problem will be combined. The complete 
instruction time will be divided into the follow-
ing two types of segment: 

“Practice segments” are segments in which 
practice problems are worked on.  

“Theory segments” are instruction segments in 
which either theory problems are worked on or 
else the theory is developed without problems. 
The theory segments are consequently defined 
differently than the non-problem segments in the 
TIMSS 1999 video study. 

The following table 1 gives an overview of the 
relevant terms used in this article. 

It is important to keep in mind that during the 
teaching of a mathematical theme, theory seg-
ments and practice segments can alternate 
repeatedly. 

Problems 
are solved 

yes no 

Activities 
are related 
to 

practice problem 
 

theory 
pro-
blem 

theory 

This part 
of lesson 
segment is 
called 

practice segment theory segment 

Cognitive 
level 
coded for 

each 
problem 

state-
ment 

and the 
relating 
segment 

each 
problem 
imple-
menta-

tion 
segment 
or sub-

segment 

the whole theory 
implementation  

segment 
(no coding of 

problem statement) 

Table 1: Overview of terms  

1.2 Problems and the required cognitive 
activities 

On a theoretical basis, it is assumed that 
different types of problems can trigger different 
types of thinking processes and consequently 
influence the learning of the students (see also 
Hiebert & Wearne, 1993). It is assumed that 
students think more deeply about mathematics if 
they are working on challenging problems and 
when a demanding subject-based discussion 
occurs in class (e.g. De Corte, Greer & 
Verschaffel, 1996; Klieme & Reusser, 2003). It 
is also assumed that problems with higher 
cognitive demands are not only of importance 
for acquiring competences in themselves, but 
also comprise a considerable potential for 
achieving overall and general learning goals 
(e.g. Schoenfeld, 1985; Winter, 1995; Wittmann, 
1981) The problem-based mathematical didac-
tical research was given an essential impulse by 
the TIMSS 1995 and 1999 video studies. 

In the TIMSS 1999 video study (Hiebert et al., 
2003; Jacobs et al., 2003), a distinction was 
made between different types of problem state-
ments: 

1. Using procedures: A problem statement that 
implies the problem would be solved by 
applying one or more procedures. 
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2. Stating concepts: Problem statements that 
suggest that the problem was typically 
solved by remembering mathematical prop-
erties or definitions or an example of a 
mathematical concept. 

3. Making connections: A problem statement 
that called for construction relationships 
among mathematical ideas, procedures and 
facts. Mathematical reasoning is often ob-
servable. These problems cannot be solved 
only by applying a known procedure or a 
concept.  

Problem statements in mathematics instruction 
form the framework for the mathematical activ-
ities in the instruction: They initiate learning 
activities and create opportunities for using 
those thinking processes that are ideally neces-
sary and are achieved for the implementation of 
the problem. 

However, the problem statements do not 
determine the observable activities in the 
instruction or the cognitive level actually 
achieved in their implementation to a sufficient 
extent. As the TIMSS 1999 video study (Hiebert 
et al., 2003) showed, and also Stein and Lane 
(1996) as well as Stein, Grover and Henningsen 
(1996), the potential of a problem statement is 
not necessarily also exhausted in the following 
implementation segment. For example, a teacher 
can transform a problem statement that would 
typically require problem-solving skills into a 
purely routine problem in which he or she 
reveals to the learners the core of the solution at 
the beginning of the solving process, meaning 
that the learners only then need to carry out 
routine procedures. 

For this reason, the distinction between 
“problem statement” as an actual problem and 
“problem implementation” as its realisation in 
the instruction is important. 

The two TIMSS video studies revealed that the 
participating countries differ considerably both 
in terms of problem statement and in terms of 
problem implementation (Hiebert et al., 2003). 
A palpable difference concerned, for example, 
the implementation of problems at the making-
connections level. For instance, it was apparent 
that in the USA, problems at the making-
connections level were implemented much more 
often at a procedure level than in the highly 
achieving countries. At the same time, the 
proportion of making-connections problems, 

which were also implemented at a connection 
level, was practically 0% in the USA.  
In Germany, too, in the course of the inter-
national school achievement study TIMSS, the 
quality, the level and the complexity of 
problems were queried and critically examined 
(cf. Blum & Neubrand, 1998; Klieme, Schümer 
& Knoll, 2001; Knoll, 2003; Neubrand, 2002). 
This critical reflection was given added fuel by 
the results of the PISA study, according to which 
from an international comparison, German 
students find it particularly difficult to solve 
difficult and complex problems correctly, while 
they produced comparative achievements in 
problems that required stronger procedural and 
technical skills (Knoche et al., 2002). 

In summary: From a theoretical perspective, 
problems that stimulate problem-solving and 
connective thinking seem to be particularly 
relevant for the development of mathematical 
and general competences, while problems that 
focus on remembering and applying procedures 
and concepts appear to be of rather minor 
importance in terms of demanding mathematical 
learning processes. In this respect, it can be 
suggested that in different types of problems, 
different “cognitive levels” of problems can be 
found. 

2. The project “Quality of instruction and 
mathematical understanding in 
different cultures” 

This study is embedded in the project “Quality 
of instruction and mathematical understanding in 
different cultures”, which is being conducted by 
the German Institute for Educational Research in 
Frankfurt/Germany and by the Institute of Edu-
cation of the University of Zurich/Switzerland 
(e.g. Klieme & Reusser, 2003). 

The project group has addressed the main 
question of how and which instructional features 
impact the development of achievement and 
motivation of secondary school students.  

In order to answer this question, we combined a 
micro-genetic research approach with a longi-
tudinal one. The micro-genetic research ap-
proach examined the impact of instructional 
quality in two micro-modules. One module 
focused on the “Introduction to Pythagorean 
theorem”, while the other related to word 
problems. The data presented here relate to the 
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“Introduction to Pythagorean theorem”. In 19 
classes of the 9th grade (Germany) and 20 
classes of the 8th grade (Switzerland), three 
lessons were videotaped. The videotaped 
teachers took part in the study voluntarily, 
meaning that on the whole, it should be assumed 
that they were a particularly motivated group of 
teachers. Accordingly, the concern is not with a 
representative sample of teachers. 

The recordings were made with two cameras: 
One was moveable and was focused on the 
teachers, while the other was fixed on the class. 
The video codings presented below all refer to 
the recordings from the teacher camera. In 
addition to the video recordings, further data 
were collected with various different instruments 
(interview, questionnaire, achievement test etc.). 
However, these are not relevant to the analyses 
in this article. 

A main emphasis in the video study is given to a 
more subject-related analysis of the videotaped 
lessons. On the one hand, we examined the level 
of problem statement and problem imple-
mentation, as reported here; on the other hand, 
we analysed the quality of theory segments of 
mathematical instruction focusing on relevant 
concepts of Pythagorean content, on quality of 
proof phases, on coherence of mathematical 
content and adaptivity of teachers’ actions. 

3. Research questions 
Based on the theoretical reflections presented 
above, this article addressed the following 
questions: 

• For how long were problems of different 
cognitive levels worked on in the framework 
of the lesson unit on Pythagorean theorem? 
On what cognitive level do problem imple-
mentation and theory implementation 
actually occur? (cf. 5.1) 

• Are there any relationships between the 
cognitive level of problem statements and 
the cognitive level of problem implemen-
tation in practice segments on the one hand 
and the cognitive level of theory segments 
on the other hand? (cf. 5.2) 

4. Method 
In this section, the methodological procedure 
will be elucidated in terms of its main features: 
The database (4.1) and the video analysis (4.2). 

4.1 Database 

In order to answer the research questions, it was 
possible to include 37 of the 39 classes. Of the 
37 classes, 18 come from Germany (9 Gym-
nasium [higher-track secondary school]; 9 
Realschule [medium-track secondary school]) 
and 19 from Switzerland (3 Gymnasium [higher-
track secondary school]; 16 Sekundarschule 
[medium-track secondary school]).  

For several reasons, possible country differences 
are not examined here. Firstly, the concern is 
with a small, non-representative sample of 
classes. Secondly, the classes are not equally 
distributed across the two school types included, 
meaning that it cannot be ruled out that putative 
country differences are attributable to differ-
ences between the school types.  

4.2 Video analysis 

In this section, the method of the video analyses 
will be presented. The terms presented in the 
following such as “theory segments” and 
“problem segments” as well as “problem state-
ment” and “problem implementation” were 
introduced in section 1.1 (see also table 1). 

The section is structured as follows: First of all, 
it is briefly shown how, in the available video 
data, on the one hand the practice segment and 
theory segment and on the other hand the 
problem statement and problem implementation 
segments were identified. Because the cognitive 
level within the practice segments and theory 
segments is captured differently, the description 
of this coding step is provided in the following 
in two separate sections. 

As the method is fairly complex, table 2 shows, 
as an advanced organizer, an overview of the 
associations. 

Differentiation of practice segments and 
theory segments 

On the basis of available codings, the practice 
and theory segments could be formed as in 
section 1.1 (cf. Hugener et al, 2006). For the 
current evaluations, a small number of segments 
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were excluded in which the Pythagorean 
theorem was not worked on. 
Of importance is the above-mentioned central 
difference to the TIMSS 1999 video study: 
problem statements with the help of which 
Pythagorean theorem was discovered or derived 
belong to the theory segment. 

 Types of 
cognitive level  

Cognitive level 
is coded for  

Problem 
statement 
• Connection 
• Concept 
• Procedure 
• (Rest)  

Each single 
problem 
statement 
segment 

Practice 
segment 
 
(Low-
inference) 

Problem 
implementation 
• Connection 
• Concept 
• Procedure 
• Results only 
• (Rest) 

Each 
identifiable 
sub-segment of 
a single 
problem 
implementation 
segment 
 

  Cognitive level 
is rated for 

Theory 
segment 
 
(High-
inference) 

Theory 
implementation 
• Connection 

and concept 
general 

• Connection 
and concept 
with student 
participation 

The whole 
theory 
segment: The 
rating scale 
captures the 
relative 
proportion of 
time in terms 
of the total 
theory time.  

Table 2:  Survey of the coding system of cognitive 
level 

Delimitation of problem statement and 
problem implementation in the practice 
segments 

As the cognitive level2 of the problem statement 
does not have to correspond with the cognitive 
level of the respective implementation, we 
undertook the following distinction: “problem 

                                                           
2 Please note that the cognitive level of problem state-
ment and problem implementation reported here are 
not the same variables as the “cognitive activation of 
students” reported in other publications of the project 
(e.g. Hugener et al., 2006). 

statement” means the actual stating of the 
problem, while “problem implementation” refers 
to the following work on the problem (cf. 
section 1). The terms “problem statement 
segment” and “problem implementation 
statement” both describe the time span in which 
a certain problem statement or concurrent 
problem statement is worked on. The difference 
lies in the fact that with the problem statement 
segment, only the cognitive level of the problem 
statement was coded, while with the problem 
implementation segment, the actual imple-
mentation was recorded. 
The coding of problem statement and problem 
implementation in the practice segment requires 
information about the time points at which 
problems were solved. Corresponding codings 
were carried out in an earlier stage of analysis 
(cf. Hugener et al., 2006). At the same time, 
analogously to the TIMSS 1999 video study, it 
was also recorded whether the concern was with 
a) several concurrent problem statements 
consisting of several practice problems, which 
the learners are given during a problem imple-
mentation segment simultaneously to the imple-
mentation, or with b) independent problem 
statements. In terms of the implementation of 
concurrent problems, in the current study it was 
only possible to determine the beginning of the 
implementation of the first problems of the 
block, but not the time point at which the 
students finished the respective problems of the 
block. For independent problems, by contrast, 
the beginning and end of the problem 
implementation was the same for all students 
and could accordingly be clearly determined. 
This results in the fact that with concurrent 
problems, it was not possible to determine the 
corresponding implementation code for each 
concurrent problem statement individually, but 
only generally for all corresponding problem 
statements (cf. below). 
In addition, it was possible to draw on the social 
form (Hugener et al., 2006) both for concurrent 
and for independent problems, meaning that a 
distinction can be made regarding how long the 
concurrent or independent problems were 
worked in classwork or in seatwork. 

Coding of the cognitive level of the practice 
segment 

Problems can, as illustrated in section 1, be set 
and implemented on different levels. Here, only 
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the cognitive level is of interest. The general 
degree of difficulty, the linguistic level and 
further conceivable distinctions were not con-
sidered. 

The following rules formed the basis of the 
coding: 

1. Each problem statement that was 
implemented or at least mentioned in the 
teaching of the three Pythagoras lessons was 
assessed with regard to its cognitive level. 
Furthermore, for each individual problem 
statement, it was determined for how long it 
was implemented. Analogously to this, if 
several problems were given to the students 
set at the same time working on all these so-
called concurrent problems. 

2. Generally speaking, every single problem 
statement or every concurrent problem 
statement is followed by a corresponding 
problem implementation segment. The 
cognitive level of this problem imple-
mentation is also coded. It is important that 
this does not have to correspond with the 
level of the problem statement. If the 
cognitive level of the implementation in the 
problem implementation segments does not 
change, only one code is allocated for the 
whole implementation segment. If the 
cognitive level on which the problem is 
implemented changes during the implemen-
tation, the time point of the change is 
determined. Each sub-segment contains a 
code. 

The method we applied is oriented towards a 
system of analysis that was developed in the 
framework of the TIMSS 1999 video study (cf. 
Hiebert et al., 2003, p. 97 ff; Jacobs et al., 2003). 
However, our method also goes beyond the 
TIMSS system of analysis on several points: In 
contrast to the TIMSS system, it plays no role 
here whether a public discussion of the problem 
took place in the instruction or not. Furthermore, 
for Jacobs et al. (2003), the whole problem 
implementation segment formed the coding unit, 
i.e. only one cognitive level was allocated per 
problem implementation, while we divided the 
problem implementation segment into individual 
sub-segments, provided observable changes in 
the cognitive level occurred. 
Therefore, both the problem statements and the 
resulting problem implementation segments 
were assessed in terms of their cognitive level. 

In the following, the two codings will be 
presented in greater detail separately. 

Coding of problem statement in practice 
segments 

In the TIMSS 1999 video study (cf. Hiebert et 
al, 2003; Jacobs et al., 2003), the problem 
statements were divided into the categories 
“making connections”, “stating concepts” and 
“using procedures” (cf. section 1.2). We adopt 
these categories in terms of their fundamental 
ideas, but change the coding on some essential 
points, as is shown below. For purposes of 
delimitation and simplification, we therefore use 
the following categories: 

• Connection instead of “making connec-
tions”, 

• Concept instead of “stating concepts”, 
• Procedure instead of “using procedures”. 

The categories were supplemented with a rest 
category, which contains further codes on non-
mathematical work or work that cannot be 
coded. 

In the following, examples for the three 
categories of problem statements are presented: 

Connection: Calculate the height of an 
equilateral triangle with a side length of 12 cm. 
Reason: Provided that the formula is not known, 
in order to solve this problem, a suitable right-
angled triangle within the equilateral triangle has 
to be recognised as a central element. This is a 
connection activity. 

Concept: Formulate the Pythagorean theorem in 
words. 
Reason: Provided that the linguistic formulation 
of the theorem is known, the theorem has to be 
recalled and reproduced here. No connection is 
necessary. 

Procedure: Calculate in the triangle ABC with 
Gamma = 90° the hypotenuse c from the legs a 
= 6.2 cm and b = 8.4 cm. 
Reason: If the formula is known, the numerical 
values can be directly put in and calculated.  

Coding was carried out with the help of the 
available problem sheets. Each problem 
statement segment is defined as the phase in the 
instruction in which the corresponding inde-
pendent problem is implemented or the corre-
sponding concurrent problem statements are 
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implemented. Each of these segments contains a 
code.  

Segments in which the students are working 
simultaneously on several concurrent problems 
received, in a multi-step procedure, the highest 
occurring code of all individual problem 
statements in the following order: 1. Connection, 
2. Concept, 3. Procedure. If the teacher therefore 
sets several problems at the same time, which 
have both a connection level and a concept level, 
then the category of connection is allocated. The 
precise procedure and the differences to the 
coding of the TIMSS 1999 video study (cf. 
Jacobs et al., 2003) can be found in Hugener et 
al. (2006). 

All identical problem statements receive the 
same code. The order was therefore not taken 
into account. The inter-rater reliability of the 
raters, who were working independently of one 
another, amounted to 100%. For the evaluations, 
the number of problems was not included in the 
calculations, as was the case with Jacobs et al. 
(2003), but rather the time in which the 
corresponding problem statement was worked 
on, as we assume that the time duration of the 
problem implementation plays a greater role for 
the students’ learning than the number of 
problems implemented.  

Coding of problem implementation in 
practice segments 

Each problem implementation segment is 
defined as the temporal phase in the instruction 
in which the corresponding independent problem 
statement is implemented or the corresponding 
concurrent problem statements are implemented. 
(It should be noted that although for each 
individual problem statement, the corresponding 
problem statement segment and the corre-
sponding problem implementation segment are 
of the same length, their coding is described 
somewhat differently: For the cognitive level of 
problem statement segment, the potential of the 
problem statement is coded, while for the 
problem implementation segment, by contrast, 
its actual implementation in the lesson is coded.) 
The coding of the problem implementation was 
based on the same categories as the coding of 
the problem statements: connection, concept and 
procedure: 

Connection: Explicit mathematical links be-
tween concepts, examples or principles are 

produced. Justification, generalisation, and 
technical argumentation are carried out. 
Concepts and procedures are used here as tools 
for argumentation. They are therefore not 
merely defined or carried out in a recipe-like 
fashion. Examples: The development of the 
geometric importance of Pythagorean theorem, 
the justification of a proof step, the construction 
of an equation, the recognition of right-angled 
triangles in complex figures. 

Concept: Mathematical terms or properties that 
are already known are recalled. Examples: Pro-
viding the formula for Pythagorean theorem or 
the definition of a square. 

Procedure: Known routine operations are car-
ried out. No links are made. Examples: Solving 
of equations, calculations etc. 

In addition, analogously to the TIMSS 1999 
video study, the category “Results only” was 
added, which records as a special case of prob-
lem implementation the mere naming of the 
solution.  
The actual coding of the problem 
implementation segments was more complex 
and is described in Hugener et al. (2006). 
With the help of video recordings, the time 
segments were coded in which work was carried 
out on a particular level.  
In public class instruction, the time in which one 
problem (or several problems in a concurrent 
problem implementation segment) was worked 
on could be divided into several different 
problem implementation sub-segments, as long 
as the cognitive level changed visibly. This was 
the case, for example, if on the connection level 
first of all an equation was constructed, which 
was then solved with the help of routine 
procedures. 
In the student work segments, only one 
implementation code was allocated, as changes 
in the cognitive level could not be clearly 
determined. 
In contrast to the problem statements, the 
problem implementation segments were coded 
according to the method of consensus. The exact 
method is described in Hugener et al. (2006). 

Examples of a problem statement with three 
different corresponding problem 
implementations 

A fictitious but realistic example aims to show 
how differently the same problem can be imple-
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mented (fig. 1). On the vertical axis, the time 
duration is given, and on the horizontal axis, 
three teachers are represented who have imple-
mented the same problem statement: 

• Teacher A begins with a short connection 
segment, followed by a procedure segment. 

• Teacher B uses, in total, more time for 
implementing the same problem. The im-
plementation ensues exclusively on the 
connection level. 

• Teacher C uses the most amount of time for 
the problem implementation. She switches 
repeatedly between the procedure and con-
cept levels. 

 
 
 
 
 
 
 
 
 
 
 
Figure 1: Different teachers’ work with students on 

the same problem statement (Legend: dark: 
connection; hatched: concept; white: pro-
cedure) 

Rating of the cognitive level of the theory 
segment 

In this article, the cognitive level of the 
problems and their implementation is examined 
not only in the practice segment, but also in the 
theory segment. The cognitive level of the 
theory segment was measured fundamentally 
differently to that of the practice segment: In the 
theory segments, problems are worked on only 
in part (cf. table 1). Conversely, exactly like in 
the practice segments, mathematical work takes 
place during the whole of the theory segment. 
For this reason, in the theory segments, only the 
implementation of the theory was coded, and not 
the problem statement segments (cf. table 2). In 
addition, the coding method differed: In contrast 
to the problem segments, the coding ensued 
more in a high-inference way (on the terms high 
and low inference, cf. Hugener, Rakoczy, Pauli 
& Reusser, 2006). In concrete terms, first the 
whole theory segment was observed on the 
video, and then one rating was given for the 

whole segment. More precisely, the following 
was rated: 

1. The proportion of the total theory time in 
which work was carried out on the con-
nection and concept level; 

2. The proportion of the total theory time in 
which students participated in activities on 
the connection and concept level. 

The proportion of connection and concept was, 
in this regard, assessed together, as the levels 
could not be separated. The lack of discrim-
inatory power of the two segments can be most 
likely explained through the fact that in the 
introduction of concepts, connection activities 
are always required also.  

Ratings were fixed on a five-point scale from (1) 
0%, (2) “less than 25%”, (3) “less than 50%” to 
(4) “less than 75%” and (5) “less than 100%”. 
Intermediate stages were also permitted. For 
both assessments, 100% represents the total 
theory time. The theory segments in the 37 
classes were rated in summary independently by 
two raters. The generalization coefficient for 
“the proportion of theory time in which the 
students participated in connection and concept 
activities” amounted to .79, and for the variable 
“proportion of theory time in which work was 
carried out on the connection and concept level”, 
it lay at .63.3 Building on the individual ratings 
of the two raters, a method of consensus rating 
was additionally carried out. The exact method 
can be found in Hugener et al. (2006). 

5. Results 
The results are presented in two sections: In the 
first section (5.1), the results of descriptive 
analyses on the proportion of theory and practice 
time, on the cognitive level of practice segments 
and on the cognitive level of theory segments 
are presented. In the second section (5.2), the 
associations between the cognitive level in the 
theory segments and the practice segments are 
described.  

5.1 Descriptive analysis 

Proportion of practice and theory segments 

                                                           
3 The generalization coefficient is interpreted analog-

ously to the kappa coefficient. From .65, a satisfac-
tory inter-rater reliability can be assumed.  

  

Teacher A Teacher B 

 

Teacher C

time 

Teacher A 
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The following table (table 3) displays the 
proportion of time in the three lessons in which 
practice problems on Pythagoras were worked 
on and theory was introduced. Table 3 illustrates 
that on average, only slightly over one third of 
the complete instruction time was used for 
implementing practice problems, while 56.3 % 
of the time was used for theory. 
 

 
Mean Standard 

deviation 
Extremes 

Practice 
segment 

37.4  21.3  5.0  81.6 

Theory 
segment 

56.3  21.5  15.2  90.7 

Table 3:  Proportion of practice and theory seg-
ments (in percentage of total lesson 
time, N = 37 classes) 

The proportion of time in which practice was 
carried out is therefore clearly lower than in the 
TIMSS 1999 video study (Hiebert et al., 2003). 
This lies above all in the definition of “problem 
segment”, which is more broadly conceived in 
the TIMSS 1999 video study than the definition 
of “practice segment” in the current analyses. In 
addition, the concern with the lessons examined 
here is with introductory lessons in which a new 
concept is developed. 
All non-mathematical segments as well as all 
segments in which mathematics was carried out 
but Pythagorean theorem was not worked on are 
combined into so-called rest time (not listed in 
table 3). This rest time makes up, on average, 
approximately 7% of the instruction time. The 
sum of rest time, theory time and practice time 
makes up the complete lesson time. 
 
Problem statements and problem 
implementation in the practice segment 
Both the number of problem statement segments 
and the duration of their implementation vary 
considerably between teachers (table 4): In total, 
in the three lessons of the 37 teachers, there 
were 229 problem statements (Each concurrent 
problem statement segment is counted in this 
process as only one segment. Segments that 
extend beyond the end of the lesson into the next 
lesson are counted twice.). On average, each 
teacher accounts for 6.2 problem statement 
segments. However, there is at least one teacher 
in each case in whose three lessons 1 and 27 
problem statement segments occur, respectively. 

The problem implementation segments lasted for 
an average of approximately 8 minutes (463.6 
seconds); the extreme cases lie far apart from 
one another at 14 seconds and approximately 43 
minutes, respectively.  

 

 
Mean Standard 

deviation 
Extremes 

Number of 
problem 
statement 
segments  

6.2 4.9 1 27 

Duration of 
one problem 
statement 
segment (in 
seconds) 

463.6 

 
481.9 14 2’592 

Table 4:  Number and duration of problem state-
ment segments  

Cognitive level of the practice segment 

Table 5 provides an overview of the time 
proportion from the complete instruction time in 
which problem statements of the corresponding 
level were worked on. This does not yet reveal 
the level on which the problems were actually 
implemented. As table 5 illustrates, in an aver-
age of 25.7% of the complete instruction time, 
connection problem statements were worked on. 
Clearly less time was spent working on pro-
cedure problem statements (10.5%), and concept 
problem statement segments are very rare (1%).  

 

 
Mean Standard 

deviation 
Extremes 

Procedure 10.5 10.4 0 32.7 

Concept 1.0 3.5 0 21.0 

Connection 25.7 19.3 0 76.3 

Rest 0.2 0.4 0 2.0 

Table 5:  Cognitive level of the problem statement 
segments in the practice segment (Pro-
portion in percentage of total lesson 
time, N = 37 classes) 

If one then adds all three time proportions and 
takes into account the 0.2% of problem 
statements for which no clear code could be 
allocated (category rest), one arrives at the 
37.4% of the instruction time during which 
practice was implemented (cf. table 3). The 
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presentation of the extreme cases shows how 
large the differences between the teachers 
already are if one only considers the time in 
which problems of the same level were imple-
mented. 

Table 6 shows the cognitive level that was 
actually worked on independently of the 
respective problem statement. To understand the 
meaning of these values in table 6, it is impor-
tant to keep in mind the coding method: Each 
problem implementation segment was divided 
during the coding into one or several sub-
segments of differing cognitive levels. Since 
teachers work mostly on more than one problem 
during the three lessons, there are mostly several 
short or longer problem implementation sub-
segments of each cognitive level per teacher. All 
of these small sub-segments were added up for 
each teacher and expressed in percentage of total 
lesson time. Following this, the mean and 
standard deviation across all teachers and the 
extremes of the teachers were determined.  

 

 
Mean Standard 

deviation 
Extremes 

Procedure 6.8 7.3 0 32.1 

Concept 9.4 6.9 0 24.0 

Connection 14.2 15.5 0 67.8 

Result only 1.1 1.5 0 5.9 

Rest 5.8 5.9 0 21.0 

Table 6:  Cognitive level of the problem imple-
mentation segments (Proportion in 
percentage of total lesson time, N = 37 
classes) 

With the exception of rounding errors, all of the 
proportions indicated add up again to a pro-
portion of 37.4 %, which was used on average 
for implementing practice problems (cf. table 3). 
It can be recognised that the majority of the time 
of problem implementation is carried out on the 
connection level (14.2 %). The concept level 
comprises 9.4 %. The least work is carried out 
on the procedure level (6.8 %). The category 
“results only” occurs so rarely that it was left out 
of the further analyses. Approximately 5.8 % of 
the total instruction time was used in practice 
problems either for non-mathematical work or 
for non-codable activities. This value was also 
no longer considered in the further evaluations. 

It should be noted that also in terms of the level 
of problem implementation, the extreme cases 
lie far apart, particularly in the connection im-
plementation.  

Cognitive level of theory segments 

Also within the theory segments, activities take 
place on a different cognitive level. Table 7 
shows the mean, standard deviation and 
extremes of the rating of the cognitive level of 
the theory segment. 

 

 
Mean Standard 

deviation 
Extremes 

Connection and 
concept general 

3.1 0.7 2 5 

Connection and 
concept with 
student 
participation 

2.6 0.7 1 4 

Table 7:  Rating of the cognitive level of theory 
segment, N = 37 classes 

The interpretation is rather difficult with the 
current response format: (1) 0%, (2) “less than 
25%”, (3) “less than 50%”, (4) “less than 75%” 
and (5) less than 100%”, in each case in 
percentage of the theory time. On average, 
approximately half of the theory time (3.1) was 
spent working on the connection and concept 
level. However, the students only spent 
approximately one third of the total theory time 
(2.6) participating in connection and concept 
activities. As is the case with the practice 
segments, the extreme cases show a broad range. 
In particular, there is at least one class in which 
in the theory segment, the students were not 
involved at all in concept or connection.  

5.2 Correlations between the cognitive level 
of the theory segment and the level of 
the practice segments 

Does the cognitive level in the theory segments 
correspond with the cognitive level in the prac-
tice segments? Are the classes that work on the 
connection and concept levels comparatively 
frequently in the theory segments the same 
classes that work on the connection and concept 
levels in the practice segments? In order to ad-
dress this question, in the following, correla-
tions will be determined between the relative 
time proportions of the cognitive level of theory 
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segments and practice segments. For this pur-
pose, two points should be taken into account: 

1. The cognitive level of the practice segments 
(problem statement and problem implemen-
tation) and the cognitive level of the theory 
segments were measured differently: The 
practice segments were measured with a 
low-inference method, and the theory seg-
ments more with a high-inference method 
(for the terms high and low inference, cf. 
Hugener, Rakoczy et al., 2006). In partic-
ular, for the practice segments, the codings 
are more refined in terms of time. This 
complicates the calculation of associations. 
The results of the following analyses 
therefore need to be interpreted with caution 
and should be replicated with further data. 

2. In the calculation of associations between 
the cognitive level in theory segments and in 
practice segments, it further needs to be 
taken into account that the proportion of 
time of these two segments adds up, apart 
from the small amount of rest time, to the 
total instruction time (cf. section 5.1). A high 
percentage value in terms of the total in-
struction time in the theory segment 
therefore rules out a high percentage value 
in the practice segment. 

For this reason, for the calculation of 
associations, the percentage of the individual 
cognitive levels was formed not in terms of the 
total instruction time, but rather only in terms of 
the total practice time or theory time. In other 
words: The cognitive level of the problem 
statements and problem implementation was 
related to the total practice time. The method 
was similar for the theory segment: The 
cognitive level of the theory segment was related 
to the complete theory time, which precisely 
corresponds to the available rating values. Thus, 
the above-mentioned mutual dependency is 
broken and it is possible for high percentage 
values to occur both in the theory and the 
practice segments. As not all variables are 
normally distributed, for reasons of simplicity, 
all correlations were calculated with the 
Spearman rank-order correlation. Tables 8 and 9 
show that the cognitive level of the theory 
segments is not significantly associated either 
with the level of the problem statement or that of 
the problem implementation. 
 

Problem statement 
 

Conne-
ction 

Con- 
cept 

Proce- 
dure 

Connection and 
concept general  -.151 .092 .124 

Connection and 
concept with 
student 
participation 

-.275+ .195 .222 

Table 8:  Correlation between the cognitive level 
of theory segment and the cognitive 
level of problem statement segment 
(N= 37; ** p < 0.01,* p < 0.05, + p < 
0.1, Spearman rank-order correlation, 
two-tailed)  

 

Problem implementation 
 

Conne-
ction 

Con- 
cept 

Proce- 
dure 

Connection and 
concept general  .095 .086 .089 

Connection and 
concept with 
student 
participation 

-.136 .232 .172 

Table 9:  Correlation between the cognitive level 
of theory segment and the cognitive 
level of problem implementation 
segments (N= 37; ** p < 0.01,* p < 
0.05, + p < 0.1, Spearman rank-order 
correlation, two-tailed) 

 
6. Discussion 
In the discussion of the results, the following 
points should be kept in mind: Our codings and 
analyses differ in fundamental points from those 
of the TIMSS 1999 video study (Hiebert et al., 
2003): 
1. The cognitive level was also analysed here 

for segments in which no problems were 
solved (in this article, these segments are 
called theory segments). 

2. Calculations are carried out with the time 
duration in which a certain cognitive level 

Practice 
segment 

Theory 
segment 

Practice 
segment 

Theory 
segment 
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was worked on, and not with the number of 
problems of the respective level. 

3. A problem implementation segment does not 
(always) only contain one implementation 
code, but rather different sub-segments with 
different cognitive levels are coded if these 
are observable. Therefore, it is possible for 
there to be a repeated change in the cog-
nitive level within one implementation of a 
single problem statement. 

In the classes examined, the greatest proportion 
of time in the practice segments was used for 
implementing connection problem statements: A 
quarter of the total instruction time or 
approximately two thirds of the practice time is, 
according to the present coding, spent working 
on connection problems. Procedure problem 
statements are worked on in 10 percent of the 
lesson time or approximately a quarter of the 
practice time. Concept problem statements occur 
very rarely. The problem implementation also 
takes place predominantly on the connection 
level: Approximately 14 % of the total lesson 
time (this corresponds to somewhat less than 40 
% of the practice time) is spent on problem 
implementation on the connection level, around 
10 % on the concept level and approximately 7 
% on the procedure level. 

The comparison of problem statement and 
problem implementation shows the following: It 
is apparent that the proportion of connection 
problem statement segments of the total lesson 
time is substantially larger than the proportion of 
connection problem implementation segments 
(25.7 % and 14.2 %). The proportion of pro-
cedure problem statement segments is also 
larger than that of the procedure problem 
implementation segments (10.5 % and 6.8 %). 
Conversely, the proportion of concept problem 
statement segments is smaller than that of the 
concept problem implementation segments (1.0 
% and 9.4 %). It is already evident from these 
data that the interplay between the cognitive 
level of the problem statement and the cognitive 
level of the problem implementation segments is 
very complex. In the analyses presented in this 
article, the cognitive level of the problem 
statement and the problem implementation were 
analysed separately. The article does not yet 
make any comment about whether the cognitive 
level of the problem statement corresponds with 
the cognitive level of the problem implemen-
tation: Are connection problems also indeed, at 

least in part, implemented on the connection 
level? We will address this question in a later 
analysis. 

In the introduction of new theory, approximately 
half of the time is spent working on the 
connection and concept level. The proportion of 
time in which the learners are participating in 
connection and concept activities lies at approx-
imately one third of the total theory time. 
Interestingly, across all teachers, no significant 
correlations were found between the cognitive 
level of problem statements and problem imple-
mentation in practice segments on the one hand 
and the cognitive level in theory segments on the 
other hand. With due caution, the results from 
tables 7 and 8 can be provisionally understood 
as indications that teachers who use a greater 
proportion of time for introducing contents on 
the connection and concept levels do not neces-
sarily also leave a greater proportion of time on 
an analogous level for practice. The cognitive 
level of the theory segments appears, accord-
ingly, to be largely independent of the level in 
the practice segment. According to the tendency, 
it even appears that a high proportion of time 
spent on connection problem implementation is 
accompanied with a low proportion of time 
spent on connection and concept in the theory 
segments. This is an indicator that there could be 
something like “compensation effects” between 
theory and practice segments. In any case, the 
results reveal that it appears worthwhile to 
analyse practice segments and theory segments 
separately. 

In the interpretation of the current results, it 
should be taken into account that the cognitive 
level of theory and practice segments was 
determined differently. It should be examined 
whether a high-inference rating of the practice 
segments leads to similar results. Funda-
mentally, it should be taken into account that the 
sample used was a non-representative sample 
and that with the three videotaped lessons, we 
only examined a small and with Pythagorean 
theorem also a special section of the curriculum. 
Possibly, the associations for other, more alge-
braic themes would turn out differently. 

Our further analyses will deal with this associa-
tion between types or levels of problem 
statements and students’ achievement gains, 
thereby controlling important influencing varia-
bles.  
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