
Object-Oriented Wrapper for Semistructured
Data in a Data Grid Architecture1

Kamil Kuliberda, Jacek Wislicki, Radoslaw Adamus
Computer Engineering Department, Technical University of Lodz,

Lodz, Poland
{kkulibe,jacenty,radamus}@kis.p.lodz.pl

Kazimierz Subieta
Computer Engineering Department, Technical University of Lodz,

Lodz, Poland
Institute of Computer Science PAS, Warsaw, Poland

Polish-Japanese Institute of IT, Warsaw, Poland
subieta@pjwstk.edu.pl

Abstract

The paper addresses the problem of integrating data based on a
XML-like semistructured model with a data grid architecture
based on an object-oriented model. This work is continuation of
the previous works on object-to-relational wrappers and covers a
generic integration procedure for utilizing a native Lore query
mechanism for retrieving data from XML data sources. A
corresponding wrapper is founded on the concepts of the stack-
based approach (SBA) and updatable views. The proposed
architecture supports grid's transparency and allows a grid user to
operate in an object-oriented environment through SBQL, a stack-
based query language. The described wrapper makes it possible to
employ the native Lorel query optimization mechanisms. A query
entering the front-end of the wrapper (object-oriented business
model) is transformed and rewritten according to the SBQL
optimization rules incorporated in the wrapper and then evaluated
in the native XML resource environment through the query
language Lorel. The paper discusses architectural issues of such a
wrapper and presents its idea through a concise example.

1 This work was supported in part by European Commission under 6. FP project eGov-Bus, IST-4-
026727-ST

OBJECT-ORIENTED WRAPPER FOR SEMISTRUCTURED DATA IN A DATA GRID ARCHITECTURE 529

1. Introduction and Motivation

The grid technology is currently widely spread among various business data
processing systems. Business-oriented grids are founded on integration of
heterogeneous data and service resources designed independently, based on
various data models and stored with various data storage technologies. Such
applications require wrappers that map local resources into the global data and
service model. Through the wrappers distributed, heterogeneous and redundant
resources can be virtually integrated into a centralized, homogeneous and non-
redundant whole. Our gird-oriented research aims to integrate various databases,
in particular implemented on relational DBMS-s, object-oriented DBMS-s, and
XML-oriented DBMS. The relational-to-object wrapper is discussed in [15]. In
this paper we deal with a wrapper that maps XML-like semi-structured data into
an object-oriented model.

Semistructured data follow a loose data model where data may have an
unfixed schema and may be irregular or incomplete. Such data arise frequently
on the Web or in applications that integrate heterogeneous resources. Important
cases of semistructured data are XML or RDF files that are stored under systems
such Tamino, Berkeley DB or Lore in the so-called parsed form. Semistructured
data can be neither stored nor queried in relational or object-oriented database
management systems easily and efficiently [20]. In general, it is rather difficult
to process semistructured data within a traditional strongly-typed data model
requiring a predefined schema. Therefore many applications involving
semistructured data do not use DBMS-s, despite their strengths (ad-hoc queries,
efficient access, concurrency control, crash recovery, security, etc.). There is
however some tendency to store XML data in relational databases and access
them through additional software layers or special query languages [14].
Examples of such systems are: STORED [8], Edge [9], XPERANTO [5] and
Agora [17]. In some cases these systems use sophisticated query evaluation and
optimization mechanisms and our intention is to design wrappers that allow one
to employ them. This relaxes us from necessity to materialize the data on the side
of our grid applications.

The problems with such wrappers can be subdivided into conceptual issues
and achieving proper performance. Conceptual problems concern how to develop
a universal mechanism that will be able to map foreign data, perhaps developed
under different data models, into a global view. This is especially difficult when
the mapping must concern not only retrieval, but also updating. After solving the
conceptual problems there are still performance problems. Both problems are
much easier if one would assume materialization (i.e. replication) of foreign data
within the grid application. Materialization of data is proposed e.g. in [4, 7].
During the materialization one can also provide changing the data to the desired
schema and format required by the grid application. However, materialization of
data is usually impossible due to data transmission overhead, problems with
keeping consistency of materialized copies and for security policies.

530 BUSINESS INFORMATION SYSTEMS – BIS 2006

Therefore we avoid materialization by direct accessing the data source and
exploiting the native data model and its programming interfaces such as query
languages. For performance it is critical to utilize native query optimization
mechanisms. Hence during the development of the wrapper we should map
somehow our grid-oriented requests into optimizable queries that are to be
efficiently performed by a local resource server.

In the proposed approach we assume an object-oriented canonical data model
similar to the CORBA, ODMG [5] or UML data models. The model is supported
by SBQL, a query language based the Stack-Based Approach (SBA) [25]. SBQL
has the algorithmic power of programming languages thus it is powerful enough
to express any required properties of a common canonical data model as well as
business intentions of the grid users. The clean semantics of SBQL allows us to
develop optimization methods comparable or more powerful in comparison to
the methods applied in SQL and in specific optimization and cost-based
techniques proposed for semistructured data repositories aiming XML.

Within SBA we have developed a novel mechanism of virtual updatable
object-oriented views [11]. It allows for achieving many forms of transparency
that are required by grid applications. The global virtual store delivers virtual
objects (defined by means of updatable views) that are indistinguishable for the
grid users from the stored objects. The views allow full updatability of the virtual
objects; for details see [11, 25].

The basic assumption of the presented approach is that the local data can be
described with any common data model (e.g. relational, XML, data-sheet). The
paper deals with the architecture of a generic wrapper for a semistructured data
model based on XML data and extended through a modified data model OEM,
Object Exchange Model [23] implemented in database management system Lore
(Lightweight Object Repository) [19]. We exploit Lorel [1], the Lore’s query
language, which supports optimization methods for queries addressing XML and
OEM [19, 20, 21]. The main challenge is taking advantage of the native Lorel
query optimizer in the proposed grid architecture. Although queries can be
optimized on the SBQL side, some optimization features, such as indices and fast
joins [20, 21, 22], can be exploited only on the Lore side. The wrapper must
translate somehow SBQL queries into Lore queries in such a way that these
optimization features will be fully utilized.

Currently, we are implementing (under .NET and Java) an object-oriented
platform named ODRA for Web and grid applications, thus the problem of
integrating different foreign resources through wrappers is critical. After
previous experience we have made the following assumptions:
1. The system will be based on our own object-oriented query language SBQL,

which has many advantages over OQL, XQuery, SQL-99 and other languages.
In particular, SBQL has the power of programming languages and precise
semantics, which is a prerequisite for developing automatic transformations of
queries into semantically equivalent forms. SBQL is already implemented,
including a type checker and a query rewriting optimizer,

OBJECT-ORIENTED WRAPPER FOR SEMISTRUCTURED DATA IN A DATA GRID ARCHITECTURE 531

2. The system will be equipped with a powerful mechanism of object-oriented
virtual updatable views based on SBQL. Our views are much more powerful
than e.g. SQL views, because they are defined through constructs having the
computational power of programming languages. There are three basic
applications of the views: (1) as integrators (mediators) making up a global
virtual data and service store on top of distributed, heterogeneous and
redundant resources; (2) as wrappers on top of particular local resources; (3)
as customization and security facility on top of the global virtual store. A
prototype implementation of SBQL views is ready [11].
We have experience with designing a similar wrapper from the DBPL system

to Ingres and Oracle, see [18] for details. The idea was that DBPL queries are to
be automatically mapped to SQL queries. On the back-end the DBPL queries
(mapped onto SQL) were optimized by the SQL optimizer. Another such a
wrapper was implemented by us for the European project ICONS, IST-2001-
32429, devoted to advanced Web applications. This wrapper was based on a
rather simplified object-oriented model. Currently we are involved in the next
European project eGov-Bus (Advanced e-Government Information Service Bus),
IST-4-026727-ST, devoted to a dynamically adaptable information system
supporting life events experienced by the citizen or business serviced by
European government organizations. The eGov-Bus prototype must integrate
distributed and heterogeneous resources that are under the control of various
institutions. The project assumes an advanced object-oriented model comparable
to UML and ODMG models, thus requires more sophisticated wrappers to local
data and service resources, in particular, based on relational databases and XML.

The rest of the paper is structured as follows. Section 2 introduces the
problem of processing semistructured data in a data grid. Section 3 describes the
authors' idea of the grid architecture. Section 4 focuses on the architecture of a
generic wrapper for semistructured data and explains the method of utilization of
the Lorel optimization in the presented solution. Section 5 concludes.

2. Discussion on Semistructured Data Processing in a
Data Grid Architecture

Integration of dozens or hundreds of servers participating in a grid requires
different design processes in comparison to the situation where one object-
oriented application is to be connected to a database with a semistructured data
model. The common (canonical) grid’s database schema is a result of many
negotiations and tradeoffs between business partners having incompatible
(heterogeneous) data and services. This makes development of an object-
semistructured wrapper much more constrained than in a non-grid case. On one
hand, the wrapper should deliver the data and services according to the
predefined object-oriented canonical schema. On the other hand, its back-end
should work on a given semistructured data store.

532 BUSINESS INFORMATION SYSTEMS – BIS 2006

The major problem with this architecture concerns how to utilize native query
optimizers. As we know, the access to simple XML data is hard to optimize even
through native XML query languages such as XQuery. The Lore system is
designed specifically for the management of such semistructured data. The data
managed by Lore may not be constrained by a schema, it may be irregular or
incomplete. In general, Lore attempts to take advantage of a structure wherever it
exists, but it also handles irregular data as gracefully as possible. Lore is
equipped with its own data model and a query language with an optimizer
designed especially for semistructured data, including a cost-based optimizer
[19]. The most important for us is that Lore is fully functional and available to
the public. The Lore's data model called OEM (Object Exchange Model) [23] is
a very simple self-describing graph-based nested object model. Once an XML
document is mapped onto the OEM data model it is convenient to visualize the
data as a directed labelled ordered graph, where nodes represent data elements
and edges represent the element-subelement relationship. Each node representing
a complex data element contains a tag and an ordered list of attribute-
name/atomic-value pairs; atomic data element nodes contain string values. There
are two different types of edges in the graph: (1) normal subelement edges,
labelled with the tag of the destination subelement; (2) crosslink edges, labelled
with the attribute name that introduces the crosslink (see Figure 3). Objects in
this data model have unique object identifiers (OIDs) and labels. For
simplification, object instances can be referred to with their label names. Objects
can be divided into atomic objects (with types such as integer, real, string, gif,
java, audio, etc.) and complex objects which may have outgoing edges to
subobjects. Any object that cannot be accessed by a path from some name is
considered to be deleted. In an OEM database there is no notion of a fixed
schema. All the schematic information is included in the labels, which may
change dynamically. Thus, an OEM database is self-describing, and there is no
regularity imposed on the data. The model is designed to handle incompleteness
of data, as well as structure and type heterogeneity.

The content of the object can be accessed by a sequence of dot-separated
labels (query path expressions) defined in Lorel – Lore Language. It allows the
users to easily retrieve and update data stored in original XML documents. Lorel
is an extension of OQL [3, 6] with certain modifications and extensions that are
useful when querying semistructured data. It introduces extensive type coercion
and powerful path expressions for traversing semistructured data, and extensive
automatic coercion for handling heterogeneous and/or typeless data without
generating errors, like in SQL and OQL. Most of Lorel is functional within the
Lore system, including some subqueries, aggregation and arithmetic operations,
constructed results, a declarative update language, and view facilities. Lorel is
described in details in [1].

Semistructured data introduces some further problems concerning techniques
of indexing. In relational and object-oriented database systems indices are
created over a set of collection of specified type attributes defined in advance,
while Lore provides labelled directed graph where the data is essentially

OBJECT-ORIENTED WRAPPER FOR SEMISTRUCTURED DATA IN A DATA GRID ARCHITECTURE 533

arbitrarily allocated. In this case it is difficult to isolate an attribute of a
collection to index, and the type of an object is not known in advance. Lore
performs automatic type coercion when comparing objects of different types.
This is an essential feature when dealing with semistructured data. Indexing
atomic values in Lore graph-based data model allows the query engine to quickly
locate specific leaf objects. Inconvenience is related to long time query
evaluations evoked by exploring the data via complete path of labelled traversals
through the graph. A solution to this problem was creating additional indices that
efficiently locate edges and paths through the data. To speed up query processing
in a Lore database there are elaborated and built four different types of index
structures. The two called Vindex and Tindex identify objects that have specific
values and the other two called Lindex and Pindex are used to efficiently traverse
the database graph. Vindex (value index), localizes atomic objects with certain
values. Tindex (text index), localizes string atomic values containing specific
words or groups of words. They can be built selectively over objects with certain
incoming labels. The OEM does not support parent pointers, therefore Lindex
(link index), localizes parents of a specific object, while Pindex (path index)
provides fast access to all objects reachable via a given labelled path [19, 20, 21].

The Lore DBMS is also equipped with a cost-based query optimizer. General
approach to query optimization is typical like other DBMSs, including cost
estimation for concurrent evaluation plans [22] and a formal basis for deriving
optimization rewriting rules such as pushing selections down. Additionally, path
expression optimization exploits the mechanisms of query pruning and query
rewriting using state extents.

In all known DBMSs, the optimizer and its particular structures (e.g. indices)
are transparent to the query language users. A naive implementation of a wrapper
causes that it generates primitive queries in given query language such as select *
from R, and then processes the results of such queries by DBMS QL cursors.
Hence, the query optimizer has no chance to work. Our experience has shown
that direct translation of object-oriented queries into Lorel is infeasible for a
sufficiently general case. We propose to transform some parts of object-oriented
queries in SBQL into accurate optimizable query at the Lorel side.

During querying over a wrapper, the mapping between a semistructured
database and a target global object-oriented database should not involve
materialization of objects on the global side, i.e. objects delivered by such a
wrapper should be virtual.

Till now, however, sufficiently powerful object-oriented views are still a
dream, despite a lot of papers and some implementations. The ODMG standard
does not deal with views. The SQL-99 standard deals a lot with views, but
currently it is perceived as a huge set of loose recommendations rather than as
entirely implemented artifact. In our opinion, the Stack-Based Approach and its
query language SBQL offer the first and universal solution to the problem of
updatable object-oriented database views. In this paper we show that the query
language and its view capability can be efficiently used to build optimized
object-oriented wrappers on top of semistructured databases. The described

534 BUSINESS INFORMATION SYSTEMS – BIS 2006

architecture assumes that a semistructured database will be seen as a simple
object-oriented database, where each labelled object between edges from OEM's
labelled directed graph is mapped virtually to a primitive object. Then, on such a
database we define object-oriented views that convert such primitive virtual
objects into complex, hierarchical virtual objects conforming to the global
canonical schema, perhaps with complex repeated attributes and virtual links
among the objects. Because SBQL views are algorithmically complete, we are
sure that every such a mapping can be expressed.

3. Architecture of a Data Grid

In this section we briefly sketch the most important elements of the proposed
grid architecture and situate them inside the wrapper module. The proposed grid
architecture is clearly shown in Figure 1. Our solution provides an access
simplification to the distributed, heterogeneous and redundant data, constituting
an interface to the distributed data residing in any local resource provider
participating in a grid. The goals of the approach are to design a platform where
all clients and providers are able to access multiple distributed resources without
any complications concerning data maintenance and to build a global schema for
the accessible data and services. The main difficulty of the described concept is
that neither data nor services can be copied, replicated and maintained on the
global applications side (in the global schema), as they are supplied, stored,
processed and maintained on their autonomous sites [12, 13].

Figure 1. The data grid architecture.

Contributory
schema

Contributory
schema

Global
client 1

Global infrastructures (trust, transactions,
indexing, workflow, enhanced web services)

Global schema

Integration
schema

Global
client 2

Global
client 3

Global virtual object and service store
(implemented through global views)

Wrapper +
Contributory

views

Local
schema

Local server 1

Wrapper +
Contributory

views

Local
schema

Local server 2

Grid
designer

Grid
designer

OBJECT-ORIENTED WRAPPER FOR SEMISTRUCTURED DATA IN A DATA GRID ARCHITECTURE 535

Following Figure 1, the elements filled in grey realize the main aspects of
contribution and integration processes of the data mapping from the wrappers
[12]. The central part of a grid is a global virtual store containing virtual objects
and services. Its role is to store addresses of local servers and to process queries
sent from global client applications, as well as to enable accessing the grid
according to the trust infrastructure (including security, privacy, licensing and
non-repudiation issues). It also presents business objects and services according
to the global schema. A global schema has to be defined and agreed upon the
organization that creates a grid. This is a principal mechanism enveloping all the
local resources into one global data structure. Physically, it is a composition of
the contribution schemata which can participate in the grid. The global schema is
responsible for managing grid contents through access permissions, discovering
resources, controlling location of resources, indexing whole grid attributes. The
global schema is also used by programmers to create global client applications.

Administrators of local servers must define contributory schemata and
corresponding contributory views [10, 12] for integrating services and objects
physically available from local servers and mapping local data to the global
schema. A contribution schema is created by the grid designer and represents the
main data formalization rules for any local resource. Basing on this, local
resource providers create their own contribution schemata adapted to a unique
data structure present at their local sites. A contribution view is the query
language definition of mapping the local schema to contribution schema. A well
defined contribution view can become a part of the global view. The mapping
process consists of enclosing particular contribution schemas residing in local
sites into the global schema, created earlier by local resource providers [10]. The
integration schemata contain additional information about dependencies between
local servers (replications, redundancies, etc.) [10, 12], showing a method for
integration of fragmented data into the grid, e.g. how to merge fragmented
collections of object data structures where some parts of them are placed in
separated local servers. A grid designer must be aware of the structure
fragmentation, which knowledge is unnecessary for a local site administrator.

The crucial element of the architecture is a wrapper which enables importing
and exporting data between different data models, e.g. our object-oriented grid
solution at one side and a Lore OEM data model on the other side. The
implementation challenge is a method of combining and enabling free
bidirectional processing of contents of local resource providers participating in
the global virtual store as parts of the global schema. The presented architecture
of a data grid is fully scalable, as growing and reducing the grid contents is
dependent on the state of global schema and views.

4. Wrapper

This section presents the architecture of the generic wrapper to the
semistructured data stored in XML documents and querying via Lorel. Figure 2

536 BUSINESS INFORMATION SYSTEMS – BIS 2006

presents the architecture of the wrapper. Externally the data are designed
according to the object-oriented model and the business intention of the
contributory schema. This part constitutes the front-end of the wrapper and relies
on SBQL. Internally the structures are presented in the SBA M0 model [25].
This part constitutes the back-end of the wrapper and is also relies on SBQL.

The mapping between front-end and back-end is defined through updatable
object views. They role is to map back-end into front-end for querying virtual
objects and front-end onto back-end for updating them.

Figure 2. The architecture of a generic wrapper for semistructured database.

SBQL front-end query:
retrieve names of the doctors working in the “cardiac surgery” ward

 having the specialization the same as Smith's specizalization

Parser

front-end SBQL query tree

External wrapper
(updatable views + query

modification)

back-end SBQL query tree

Rewriting query

Internal wrapper (convertion of parts
of the tree to Lorel lore exec)

Info on indices and fast joins

SBQL Iterpreter

Lore DBMS with semistructured data XML Database
Semistructured

data model

((Doc where worksIn.Ward.name = "cardiac surgery") where spec = (Doc where name =
"Smith").spec).name

The first 6 steps of optimization procedure described in section 4.4

lore_exec clause conversion process, step 8 and 9 of
optimization procedure described in section 4.1

Step 7 of optimization procedure described
in section 4.4

lore_exec("SELECT X.Spec FROM DB.Doctor X WHERE X.Name = 'Smith'")
lore_exec("SELECT Y.* FROM DB.Doctor Y WHERE Y.WorksIn.Name = 'cardiac
surgery'")

M0 representation

of the Lore model

Business model

(object-oriented)

OBJECT-ORIENTED WRAPPER FOR SEMISTRUCTURED DATA IN A DATA GRID ARCHITECTURE 537

The following optimization methods hold for the most often select-type
queries, possibly there might be need to adjust them in case of updating or
deleting queries, especially at the query modification stage. The object accessing
on both sides of wrapper (front-end and back-end) is similar. At the front-end
there is an object data model supported by SBQL. Each object in a database can
be distinguished by a unique object identifier (OID).

At the back-end of the wrapper there is a semistructured data model supported
by Lorel. The database objects can be identified by a pair: an object identifier
(OID) and a label – the name of object collection. When Lorel needs to access a
simple object, it must give both parameters <OID, label>. In this case either-side
mapping of various sequences (including references, pointers) of objects is rather
unsophisticated and we can call optimization methods without any limitations on
both sides of the wrapper.

There is an assumption that for better performance of object mapping the
wrapper designer should include in its structure information about available
Lorel optimization mechanisms such as indices, cost-base optimizations, which
can be introduced manually if not available automatically from the Lore catalogs.

The wrapper module should reach a semistructured data without any
limitations. This obliges wrapper designers to produce a suitable connector for
mapped DBMS (in this case Lore). Because Lore is available to public and their
creators has issued the open API for programmers [16, 19] it is possible to create
an application module which can freely and directly manage a data through
Lorel. We have supplied the wrapper with lore_exec operation which
communicates with the API application – it can send queries to Lore DBMS (for
full processing including utilization of native optimizations) and receive (back to
the API application) complete data collections as responses (including data
properties such as OIDs and labels) within Lore DBMS.

The query optimization procedure (looking from wrapper's front-end to back-
end) for the proposed solution can be divided into several steps:
x Query modification procedure [11, 24] applies to seeds defined by single

queries and results in applying on_retrieve functions (on_navigate in case
of pointers), i.e. all front-end query elements referring views are substituted
with appropriate macros from views' definitions. The final effect is a huge
SBQL query referring to the M0 model [25] available at the back-end.

x The modified query is rewritten according to static optimization methods
defined for SBQL [24] such as removing dead sub-queries, method of
independent queries, factoring/pushing out, etc. The resulting query is SBQL-
optimized, but still no Lorel optimization is applied.

x The SBQL-optimized query can be now transformed to a form that native
Lorel optimization is applicable. According to the available information about
Lorel optimizer, the back-end wrapper's mechanisms analyze the SBQL query
in order to recognize patterns representing Lorel-optimizable queries. For
instance, if for the SBQL query of the form Y where X == v there is a
Lorel index on Y objects and their X subobjects, it is substituted (in the syntax
tree) with lore_exec clause invoking the appropriate Lorel query:

538 BUSINESS INFORMATION SYSTEMS – BIS 2006

 lore_exec(“SELECT z.* FROM DB.Y z WHERE z.X = v”)

Any Lorel query invoked from lore_exec clause is assumed to be optimized
efficiently and evaluated in the native Lore DBMS environment. Its result is
pushed onto the SBQL query result stack in a form of Lorel tuples stored as
complex binders and used for regular SBQL query evaluation and also for update
and delete-type queries.

4.1. Optimization Example

As an optimization example consider a simple structure of labelled directed
graph objects stored in the Lore. The model contains information about doctors
DB.Doctor and hospital’s wards DB.Ward, “DB” stands for the stub of
semistructured data model depicted through labelled directed graph, see Figure 3.

Figure 3. The example of a semistructured data model in labelled directed graph.

The semistructured schema is wrapped into an object schema shown in Figure
4 according to the following view definitions. The DB.Doctor-DB.Ward
relationship is realized with worksIn and manager virtual pointers:

create view DocDef {
 virtual_objects Doc {return DB.Doctor as d;}
 create view nameDef {
 virtual_objects name{return d.Name as n;}
 on_retrieve {return n;}
 }
 create view specDef {
 virtual_objects spec {return d.Spec as s;}
 on_retrieve {return s;}
 }
 create view worksInDef {
 virtual_pointers worksIn {return d.WorksIn as wi;}
 on_navigate {return wi as Ward;}
 }}

&1

&2

&6 &7

DB

Doctor

Name

Spec

„Smith”

&3

&8 &9

„neurologist”

&4

&10 &11

„heart
surgeon”

&5

&12

Ward

Manager

„cardiac

surgery”

WorksIn

Name Name

Doctor Doctor

Spec

Spec

„heart
surgeon”

WorksIn

WorksIn

„Black”
„White”

OBJECT-ORIENTED WRAPPER FOR SEMISTRUCTURED DATA IN A DATA GRID ARCHITECTURE 539

create view WardDef {
 virtual_objects Ward {return DB.Ward as w;}
 create view nameDef {
 virtual_objects name {return w.Name as n;}
 on_retrieve {return n;}
 }
 create view managerDef {
 virtual_pointers manager {return w.Manager as b;}
 on_navigate {return b as Doc;}
 }}

Figure 4. Object schema used in the optimization example (wrapper's front-end).

Consider a query appearing at the front-end (visible as a business database
schema) that aims to retrieve names of the doctors working in the “cardiac
surgery” ward having the specialization the same as Smith's specialization. The
query can be formulated as follows (we assume that there is only one doctor with
that name in the store):

((Doc where worksIn.Ward.name = "cardiac surgery") where
 spec = (Doc where name = "Smith").spec).name;
The information about the local schema (semistructured model) available to

the wrapper that can be used during the query optimization is that Name objects
are uniquely indexed by specific Lore indexes.

The transformation and optimization procedure is performed in the following
steps:
1. First we introduce the implicit deref (dereference) function:

((Doc where worksIn.Ward.deref(name) == "cardiac surgery") where
deref(spec) == (Doc where deref(name) ==
"Smith").deref(spec)).deref(name);

2. Next the wrapper substitutes deref with the invocation of on_retrieve
function for virtual objects and on_navigate for virtual pointers:
((Doc where worksIn.(wi as Ward).Ward.(name.n) == "cardiac
surgery") where (spec.s) == (Doc where (name.n) ==
"Smith").(spec.s)).(name.n);

3. The wrapper substitutes all view invocations with the queries from virtual
objects definitions:
(((DB.Doctor as d) where ((d.WorksIn as wi).(wi as
Ward)).Ward.((w.Name as n).n) == "cardiac surgery") where
((d.Spec as s).s) == ((DB.Doctor as d) where ((d.Name as n).n)
== "Smith").((d.Spec as s).s)).((d.Name as n).n);

4. Then it removes auxiliary names s and n:
(((DB.Doctor as d) where ((d.WorksIn as wi).(wi as
Ward)).Ward.(w.Name) == "cardiac surgery") where (d.Spec) ==
((DB.Doctor as d) where (d.Name) == "Smith").(d.Spec)).(d.Name);

5. Also it removes auxiliary names d and w:
((DB.Doctor where ((WorksIn as wi).(wi as Ward)).Ward.Name ==
"cardiac surgery") where Spec == (DB.Doctor where (Name ==
"Smith").Spec).Name;

6. Next it removes auxiliary names wi and Ward:
((DB.Doctor where WorksIn.Name == "cardiac surgery") where Spec
== (DB.Doctor where (Name == "Smith").Spec).Name;

Doc [1..*]
name
spec

Ward [1..*]
name

worksIn >

< manager

540 BUSINESS INFORMATION SYSTEMS – BIS 2006

7. Now the common part is taken before the loop to prevent multiple evaluation
of a query calculating specialization value for the doctor named Smith:
((((DB.Doctor where Name == "Smith").Spec) group as z).
(DB.Doctor where WorksIn.Name == "cardiac surgery") where Spec
== z).Name;

8. Because Name objects are uniquely indexed (in path DB.Doctor), the sub-query
(DB.Doctor where Name == "Smith") can be substituted with the
lore_exec clause:
(((lore_exec("SELECT X.Spec FROM DB.Doctor X WHERE X.Name =
'Smith'")) group as z).(DB.Doctor where WorksIn.Name == "cardiac
surgery") where Spec == z).Name;

9. The same situation can be performed for the sub-query (DB.Doctor where
WorksIn.Name == "cardiac surgery"). The wrapper produces the
following lore_exec substitution:
(((lore_exec("SELECT X.Spec FROM DB.Doctor X WHERE X.Name =
'Smith'")) group as z).(lore_exec("SELECT Y.* FROM DB.Doctor Y
WHERE Y.WorksIn.Name = 'cardiac surgery'") where Spec ==
z).Name;

The presented above Lorel queries invoked by lore_exec clause are executed
in the local data resource.

5. Conclusions

We have shown that the presented approach to wrapping databases based on
semistructured data to object-oriented business model with application of the
stack-based approach and updatable views is conceptually feasible, clear and
implementable. As it is shown in the example, a front-end SBQL query can be
modified and optimized by application of appropriate SBA rules and methods
within the wrapper (updatable views) and then by the native optimizers for an
appropriate resource query language. The described wrapper architecture enables
one to build generic solutions allowing virtual representation of data stored in
various resources as objects in an object-oriented model.

The described optimization process assumes correct semistructured-to-object
model transformation (with no loss of database logic) and accessibility of the
semistructured model optimization information such as indices and/or cost-based
optimizations. The native resource access optimizer can be fully utilized by the
proposed method.

6. References
1. S.Abiteboul, D.Quass, J.McHugh, J.Widom, and J.Wiener. The Lorel Query

Language for Semistructured Data. Intl. Journal on Digital Libraries, 1(1):68-88,
April 1997.

2. S.Abiteboul, R.Goldman, J.McHugh, V.Vassalos, and Y.Zhuge. Views for
semistructured data. Proc. of the Workshop on Management of Semistructured Data,
pages 83-90, Tucson, Arizona, May 1997.

OBJECT-ORIENTED WRAPPER FOR SEMISTRUCTURED DATA IN A DATA GRID ARCHITECTURE 541

3. F.Bancilhon, C.Delobel, and P.Kanellakis, eds. Building an Object-Oriented Database
System: The Story of O2. Morgan Kaufmann, San Francisco, California, 1992.

4. C.K.Baru, A.Gupta, B.Laudascher, R.Marciano, Y.Papaconstantinou, P.Velikhov,
V.Chu. XML-based information mediation with MIX, Proc. ACM SIGMOD Conf. on
Management of Data, 1999.

5. M.Carey, J.Kiernan, J.Shanmugasundaram, E.Shekita, S.Subramanian: XPERANTO:
A Middleware for Publishing Object-Relational Data as XML Documents, Proc. of
the 26th VLDB Conf., 2000.

6. Object Data Management Group: The Object Database Standard ODMG, Release 3.0.
R.G.G.Cattel, D.K.Barry, Ed., Morgan Kaufmann, 2000.

7. V.Christophides, S.Cluet, and J.Simeon. On wrapping query languages and efficient
XML integration, In Proc. of ACM SIGMOD Conf. on Management of Data, 2000.

8. A. Deutsch, M Fernandez, D.Suciu. Storing semistructured data with STORED, Proc.
of SIGMOD, 1999.

9. D.Florescu, D.Kossman. Storing and Querying XML Data using an RDBMS. Data
Engineering Bulletin, 22(3), 1999.

10. K.Kaczmarski, P.Habela, K.Subieta. Metadata in a Data Grid Construction. Workshop
on Emerging Technologies for Next generation GRID (ETNGRID-2004), 13th IEEE
International Workshops on Enabling Technologies: Infrastructures for Collaborative
Enterprises (WETICE-2004), 2004.

11. H.Kozankiewicz, J.Leszczy owski, J.P odzie , K.Subieta. Updateable Object Views.
ICS PAS Reports 950, October 2002

12. H.Kozankiewicz, K.Stencel, K.Subieta. Integration of Heterogeneous Resources
through Updatable Views. Workshop on Emerging Technologies for Next generation
GRID (ETNGRID-2004), 13th IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises (WETICE-2004), 2004.

13. H.Kozankiewicz, K.Stencel, K.Subieta. Implementation of Federated Databases
through Updateable Views. Proc. 2005 European Grid Conference, Springer LNCS,
2005

14. R.Krishnamurthy, R.Kaushik, J.F.Naughton. XML-to-SQL Query Translation
Literature: The State of the Art and Open Problems. Proc. of the 1st Int'l XML
Database Symposium (XSym), pages 1-18, Berlin, Germany, September 2003.

15. K.Kuliberda, J.Wislicki, R.Adamus, K.Subieta. Object-Oriented Wrapper for
Relational Databases in the Data Grid Architecture. OTM Workshops 2005, LNCS
3762, Springer 2005, pp. 367-376

16. Lore DBMS Web Page: http://www-db.stanford.edu/lore/
17. I.Manolescu, D.Florescu, D.Kossmann, F.Xhumari, D.Olteanu. Agora: Living with

XML and Relational, Proc. of the 26th VLDB Conf., 2000.
18. F.Matthes, A.Rudloff, J.W.Schmidt, K.Subieta. A Gateway from DBPL to Ingres.

Proc. of Intl. Conf. on Applications of Databases, Vadstena, Sweden, Springer LNCS
819, pp.365-380, 1994

19. J.McHugh, S.Abiteboul, R.Goldman, D.Quass, and J.Widom. Lore: A Database
Management System for Semistructured Data. SIGMOD Record, 26(3):54-66, 1997

20. J.McHugh, J.Widom, S.Abiteboul, Q.Luo, and A.Rajaraman. Indexing Semistructured
Data. Technical Report, January 1998.

21. J.McHugh, J.Widom. Query Optimization for XML. Proc. of 25th Intl. VLDB Conf.,
Edinburgh, Scotland, September 1999.

22. J.McHugh, J.Widom. Query Optimization for Semistructured Data. Technical Report,
November 1997.

542 BUSINESS INFORMATION SYSTEMS – BIS 2006

23. Y.Papakonstantinou, H.Garcia-Molina, and J.Widom. Object exchange across
heterogeneous information sources. Proc. of the 11th International Conference on
Data Engineering, pp. 251-260, Taipei, Taiwan, March 1995.

24. J.Plodzien. Optimization Methods In Object Query Languages, PhD Thesis. IPIPAN,
Warszawa 2000.

25. K.Subieta. Theory and Construction of Object-Oriented Query Languages. Editors of
the Polish-Japanese Institute of Information Technology, 2004 (in Polish).

