
A little theory of abstraction∗

Roland Kaschek

Department of Information Systems

Massey University

Palmerston North, New Zealand

January 28, 2004

Abstract

By means of abstraction a notion A is derived from a notion S. The re-
sulting notion A often is called abstraction as well. Abstraction is considered
important for information systems development. It often is naively under-
stood as simply prescinding from aspects not considered as important for a
task at hand. This approach to abstraction does not take into account two
points: Firstly, prior to prescinding from characteristics of a phenomenon
this phenomenon must be constructed conceptually. Secondly, the extent of
a notion in general only can be determined with respect to a scope that was
presupposed. The present paper proposes an approach to abstraction that
meets both of these points and restricts abstraction to be carried out only
within predefined conceptual frameworks. A few commonly used example
frameworks are identified and discussed. The paper aims at helping those
who feel that the known abstraction concepts for a task at hand are not
satisfactory and want to define better suitable ones.

1 Introduction

It is folk knowledge that abstraction is important in information systems develop-
ment. Occasionally informatics (or computer science as a whole) is considered as
the science of abstraction, see [AU96, p. 1]. However, a theory of abstraction in
Informatics, and in Information Systems (IS) in particular, seems not to exist. In
the present paper we outline a limited model of abstraction. The model on the one
hand is limited in that it ignores the abstractions that are implied by imperfection
of human senses and by limitations of human consciousness that leads to the at-
tention being focused on a small number of phenomena and more or less ignore all
other phenomena. The model of abstraction on the other hand is limited in the

∗The author thanks Jörg Desel from Katholische Universität Eichstätt-Ingolstadt for his helpful

comments on an earlier version of this paper.

sense that it rules out abstractions that do not define the extent of the derived no-
tion. Abstractions like ”The Good” or ”The Evil” are used in every-day reasoning.
However, their extent is ill-defined and contested. Therefore these are not within
the scope of the model of abstraction that is proposed in the present paper. Our
model of abstraction is even narrower as is shown by an example below.

It is not obvious in what respect abstraction is involved in information systems
usage. For an explanation of this matter we refer back to the Scandinavian infor-
mation systems school. This school 30 years ago worked out definitions of the term
information systems that are helpful in our respect.

Solving business tasks with the help of information systems is simplified if these sys-
tems implement appropriate abstractions. For example, a database might contain
a table EMPLOY EE and the tuples of EMPLOY EE represent the employees of
the company. Then an individual I is capable of determining the company’s number
of employees by counting the tuples of EMPLOY EE. This surely is simpler than
counting the employees directly since these might be many, it might be difficult to
assemble them at a given location and no respective counting tool or techniques
might be available. Similarly, determining an employee’s date of birth (DOB) can
be easy if one prescinds from the fact that the respective tuple in EMPLOY EE

is not the employee and that the query for the value of the DOB-field is not the
same as asking the employee for her or his date of birth. However, asking the
employee directly for his or her date of birth might be difficult since s/he might
not be available, able or willing to mention her/his date of birth.

According to the Longman Dictionary of Contemporary English to abstract means:
”to remove something from somewhere or from a place”. Extending the picture
[Mat02] defines abstraction as ”. . . a memory process that stores the meaning of
a message without storing the exact words and grammatical structures.” See also
the more encyclopedic sources [Thi92, RM98]. Below we introduce an approach
to abstraction that avoids the danger of ill-defined abstraction and covers several
abstraction concepts that often are applied in information systems development.
The basic idea is that the process of prescinding from aspects of phenomena is
restricted to take place within a conceptual framework that must be defined prior
to defining the abstraction.

The approach to abstraction taken in the present paper is a constructivistic or
activity-oriented one. Rather than assuming that abstractions are around and only
need to be identified, we are going to assume that abstractions need to be carried
out in a case at hand by an individual. Therefore, we are going to presuppose an
individual that performs some cognitive activities and report on what we believe
s/he is doing. However, we do not explicitly mention the observer. We furthermore
do not presuppose that the observer is omniscient. Rather we report on the findings
an observer might have who has discussed with the modeler what s/he is doing.

Outline

The paper is structured as follows: Related work is discussed in the following
section. In section 3 we introduce information systems based on the definitions
obtained by the Scandinavian IS school and argue that using information systems
involves abstraction. After that in section 4 we briefly discuss a meta model for the
concept ”semantic model”. The key idea in the respective definition is to define
abstraction concepts as (purposefully chosen) sets of perspectives. In the following
section 5 we define and discuss ”abstraction” and several predicates from which
perspectives can be derived that are frequently used in modelling. The paper is
concluded with a resume in section 6 and the references.

2 Related work

To denote that notion A is derived by an abstraction concept α from notion S

we write α : S ⇒ A. Simplifying the situation significantly, in the sense of Frege, we
presuppose notions to be such that they have a sharp and uniquely defined extent,
i.e., a set of phenomena falling under them. Notions may be composite and more
or less complex. Abstraction concepts are a particular kind of notion. For easily
accessible overviews on notions refer to [Kel95, Ch. 8] or [Thi92]. The extent of
notionX is denoted by ε(X). To see that abstraction is related to identification and
modelling let α : S ⇒ A be an abstraction concept. α is related to identification
since, given α, by means of S one may refer to A and thus identify A. Abstraction
is related to identification at the level of notion extents since the extent ε(A) of a
notion A shall contain only those phenomena that are relevant for a task at hand.
Thus these phenomena need to be identified. Abstraction is related to modelling
since one may consider A as a model of S. At the level of notion extents one may
consider an element of ε(A) as a model of the elements of ε(S) and may derive
information about the latter from the former one.

Identification was discussed, e.g. in [Tha00]. Note that Thalheim does not define
”abstraction”. Rather he stays with the traditional way of dealing with it in the
conceptual modelling literature, i.e., he lists, using a different terminology, (mod-
elling notions and several) abstraction concepts, i.e., different ways to abstract a
notion A from a notion S. The weakness of doing so is that it does not really help
in defining new abstraction concepts which might be perceived as essential if the
known ones cannot be applied satisfactorily. This however is one of the purposes
of the present paper. In the source Thalheim presupposes identification to be un-
derstood as distinguishing the particular entity, to which one wishes to refer to,
from all others in a given collection of entities. The source though using a differ-
ent terminology classifies identification as being either associative or conventional.
Associative identification means distinguishing uniquely based on instances of char-
acteristics the entity is known to have. Conventional identification by Thalheim
was understood as instance of a conventional act of referencing such as pointing
and naming. Thalheim points out that associative identification as well as con-

ventional identification is used in conceptual modelling (and in this area are not
always consistently dealt with) as well as design and implementation.

The theory of models adopted in this paper is the one of Stachowiak, see, e.g.
[Sta92, Sta83, Sta73], see furthermore [Lud03]. Further work about modelling that
appears to be compatible with Stachowiak’s theory is [MCF03, Rot89, Qua85].
Rather than following Stachowiak in all details we use only a part of his theory and
simplify it. For the sake of simplicity we consider models as systems of notions.
Stachowiak introduces the model relationship as -in the simplest form- three
place predicateM(T, S, I), specifying that individual I considers the notion system
S, i.e., the substitute or model as a model of the notion system T , i.e., the thing
or original. Stachowiak (using a different terminology) requires as quality aspect
of the model relationship that the following assertions are true (see [Sta92]):

1. There exist representationsRT , RS of T and S respectively that are associated
to each other by partial bijections F : RT → RS and F ∗ : RS → RT such
that F ∗ ◦ F = 1dom(F), and F ◦ F ∗ = 1dom(F∗) hold.

2. The individual I regarding his/her aim to solve a problem PT regarding T

first, with help of F , translates PT into a problem PS regarding S. I then
obtains a solution ΣS of PS , and, with help of F ∗, translates ΣS into a
solution candidate ΣT for the problem PT regarding T .

This solution candidate would then be a solution for PT , if the modelling process
was successful. Stachowiak points out that in general RT \ dom(F) 6= ∅, and
RS \ dom(F

∗) 6= ∅ and that usability of S as a model of T in part is a consequence
of these inequalities. Given a model relationship M(T, S, I) one easily constructs
an abstraction αM : T ⇒ S. However, Stachowiak seems not to have worked out a
theory of abstraction.

Work on conceptual modelling such as [SS77b, SS77a, TL82, HK87, PM88, Myl98]
regarding abstraction mainly identified and discussed abstraction concepts such as
classification, generalization, aggregation and association. The Zachman frame-

work (see, [Zac87, SZ92]) contributes to a theory of abstraction in that it points
out interrogatives that appear to be important for systems development in com-
panies. A similar approach to abstraction was used in [May94], which focuses on
perspectives to discuss association types. The Zachman framework introduces six
perspectives or angles on the course of events in an enterprize: ”who”, ”when”,
”what”, ”why”, ”how” and ”where”. These interrogatives represent abstraction
concepts that indicate valuable perspectives on the state of affairs of a given com-
pany. These can be applied in a number of cases to various things one wishes to
have more complete information about.

The basic idea in the Zachman framework is that, given a well-defined concep-
tual framework (i.e. the company at hand) abstraction concepts (provided by the
mentioned interrogatives) can be introduced within the framework. Outside such
framework abstraction concepts are threatened of being extensionally ill-defined.

For example the interrogative ”what” (What things are specified by given charac-
teristics?) results in answers that are meaningful to a given individual I if applied
to the state of affairs of a given company. Presupposing an unrestricted scope out
of which answers to the ”what” interrogative can be chosen often would result in
an overwhelming amount of -in total- meaningless data.

3 Information Systems

According to [HKL95] Langefors already in 1972 defined the notion information
system from a functional point of view as a technically implemented media for
recording, storing, disseminating linguistic expressions as well as for deriving lin-
guistic expressions from given ones. Linguistic expressions here are understood as
(composite) signs that are valid instances of a particular language. Using informa-
tion systems thus is understood in this paper as recording, storing and processing
sentences of a language in a technically implemented media and retrieving such
sentences from this media. Using information systems therefore can be understood
as a turn taking of sending and receiving messages, i.e., as a particular kind of
communication. In this paper that what is actually communicated, i.e., trans-
ferred from sender to receiver is a pattern. Users of information systems by means
of these patterns refer to something different from these. Thus, as was already
pointed out by [LM78], using information systems involves linguistic perception.

According to the structural point of view definition of the notion information sys-
tem (see, [HKL95] and [BS98]) such a system has to meet a purpose that is defined
by those who arrange an information system to be made effective. Certain busi-
ness functions shall be supported by using the information system. Those using
the information system thus are supposed to have a task at hand and for solving
it need some information that they obtain by processing the linguistic expressions
they retrieve from the information system.

Though not always recognized, quite a bit of cognitive processing is involved in
information system usage. Firstly, based on the business function or purpose of
the information system users chose an inquiry fitting the task at hand and launch it
against the information system. Secondly, the users try to make efficient use of the
system reply to their inquiry. The first one of these steps involves abstraction as
it implies the transition from phenomena to predefined generic notions. It further
involves a means-ends analysis for determining the system operation best suited
to the task at hand. The second of the mentioned steps involves an operation
carried out that is inverse to abstraction, i.e., to transition from generic notions to
phenomena.

4 Semantic Models

In Information Systems, Informatics and Computer Science, modelling often is con-
sidered key. Often models are created by using a so called semantic model. [May94]

used the idea of perspective to explain how association in object models can be
understood. Object role modelling particularly focused on the idea of association
type perspective, i.e. the notion ”role”. Perspectives introduce a separation of con-
cern into cohesion between objects (occupying the perspectives). This is the basic
idea in the meta model represented in figure 1 that defines the notion ”semantic
model”.

Semantic model

1

*

Notion

-level

-condition

Domain notion

Model
1

*

stencil

stamping

Modeling notion

Abstraction concept

Perspective

Constraint type

1

*

Constraint

Cohesion

1

-slot

*

1

-value
 *

1

-mediator

*

Modeling notion extent

Perspective extent

Abstraction concept extent

-constrains
*

*

Figure 1: A meta model for semantic models

According to this diagram semantic models consist of notions that either are mod-
elling notions, abstraction concepts, perspectives or constraint types. Abstraction
concepts consist of perspectives. E.g. in the Entity Relationship model the abstrac-
tion concept ”association type” consists of one perspective only: ”role”. Often it
is required that this perspective for a particular association type that is considered
as a domain notion is instantiated (at least) two times. For example, regarding
the association type ”spouse” the the notion ”role” is instantiated twice to the
role instances ”husband” and ”wife”. The abstraction concepts ”generalization”
and ”aggregation” respectively consist of the two perspectives: ”super” vs. ”sub”,
and ”whole” vs. ”part”. To avoid multiple inheritance the ”super” perspective
is usually limited to being instantiated exactly once while the ”sub” perspective
may be instantiated several times. Similar conventions are usually observed for
”aggregation”.

The diagram shows that constraints and cohesions are domain notions. We con-
strain the diagram by specifying that constraints are stampings of constraint types
and that cohesions are stampings of abstraction concepts or of perspectives. Co-
hesions then are aggregates of domain notions that play roles ”slot”, ”value” and
”mediator”. Domain notions in the role of value occupy the slot created by a do-
main notion in the role ”slot”. Cohesion sometimes is established by a mediator.
This, e.g. is the case for entity types that are related to each other by an associ-

ation type. Similarly, a role instance, i. e., a stamping of the perspective ”role”
of the abstraction concept ”association type” may establish a cohesion between
a particular entity type and a particular association type. For example, the role
instance ”wife” establishes a cohesion between entity type EMPLOYEE and the
association type ”spouse”. There is a corresponding cohesion at the extent level.

The attributes ”level” and ”condition” may be used to restrict the capability of
defining cohesion by a given semantic model. For example, the HERM, see [Tha00],
defines the level of entity types as 0. It furthermore defines the level of association
types as positive integer. An association type with level l is allowed to establish
cohesion between a sequence of database types (i.e., entity types or association
types) of level l′ ≤ l provided one of the sequence items has a level equal to l − 1.

Constraints according to the diagram restrict cohesions. Relevant constraint types,
e.g. are key dependencies, functional dependencies, extent thresholds and look-up
constraints or participation constraints. The former restrict entity type extents
or association type extents, i.e., respectively cohesion between an entity type and
its instances or between an association type and its instances. Similarly, lookup
constraints and participation constraints restrict cohesions between entity type
extents or between entity type extents and association type extents.

The meta model in figure 1 was constructed as a framework for data models such
as the ER model or the HERM. However, it is likely that it fits semantic models as
well that are used for behavior- (State Charts) or causality modelling (Petri Nets)
rather than structure modelling.

5 Abstraction

Well known abstraction concepts (or what is here considered to be the same: sets
of perspectives) that are used in a number of different situations are classifica-
tion, generalization and aggregation. See for example [RBP+91] as a text in which
these concepts are used in structure modelling and in behavior modelling. Fur-
ther abstraction concepts are discussed, e.g. in [Myl98] and in [Tha00]. While the
elder literature (see, e.g. [Pol88, Che76, SS77b, SS77a, HK87, PM88, HK90]) on
semantic modelling deals more with abstraction concepts such as the ones men-
tioned above the newer literature also deals with somewhat different concepts such
as ”localization abstraction” (see, e.g. [Tha00, WM02]) or ”context” (see, e.g.
[KSTZ03, KST03]).

5.1 Abstraction defined

We do not aim at full formalization of our theory. In particular we do not define the
concepts ”notion”, ”phenomenon”, ”predicate” and ”role”. Rather we assume that
these are understood based on the examples used or discussed here. We further do
not use a formal language. We only use a partially formalized technical English and

presuppose that an a-priori semantics (that we do not define) provides a reasonable
meaning for the basic terms we are going to use.

Let m,n be positive integers and T a set. A sequence of length m over T is a
mapping L : {1, . . . ,m} → T and thus is a set {(i,L(i)) | i ∈ {1, . . . ,m}, L(i) ∈
T }. Let L be a sequence of length m over T . If n ≤ m then a subsequence S of
length n of L is a function S : {1, . . . , n} → T that can be extended to L, i.e., for
which holds L |{1,...,n}= S. For a set S respectively the set of its subsets and the
set of words over it is denoted with P(S) and S∗.

Definition 1 Let I be a modeler, m be a positive integer, T a set of notions
defined by I and L a sequence of length m over T . A cohesion predicate P (L)
(defined by I) is a predicate that specifies a conceptual cohesion CL, i.e., a mapping
CL : P({(i, ei) | i ∈ {1, . . . ,m}, ei ∈ ε(L(i))}) → {true, false} and ascribes a
role, i.e., specific function or meaning Ri in CL, to the phenomena in ε(Ti), for
Ti = L(i) ∈ T , ∀i ∈ {1, . . . ,m}. The cohesion CL is then said to be valid for a set
S, iff CL(S) = true holds.

Example 1 Let I be a modeler, m = 2, T = {EMPLOY EE}, and L : {1, 2} →
T , i 7→ EMPLOY EE. I defines a cohesion predicate P (L) called ”spouse” that
specifies the cohesion CL that I considers to be valid regarding regarding an em-
ployee set {e, f} iff e and f are married to each other. The roles ascribed to
EMPLOYEE (modifying the actual legal specification significantly) are R1 = wife,
and R2 = husband.

S -
CS

- Q(P,S)

τ γ

T -
CL

- P(L)
τ γ

?

6

σ A(P,Q,I)y

Figure 2: Structure of the situation in definition 2.

Definition 2 Let I be a modeler. Presuppose that I defines a set T of notions,
a sequence L of length m over T , and a cohesion predicate P (L). Assume further
that the individual I for a sub-sequence S of L of length n defines the predicate
Q(P,S) : P({(i, ei) | i ∈ {1, . . . , n}, ei ∈ ε(S(i))}) → {true, false}, S 7→ true, iff
∃T ⊆ {(i, ei) | i ∈ {1, . . . ,m}, ei ∈ ε(L(i))}, with S ⊆ T , and CL(T) = true. Then
the predicate A(P,Q, I) means that I proceeds from P (L) to Q(P,S), i.e., that I

in CL abstracts from the notions (and their roles) in {(i,L(i)) | i ∈ {1, . . . ,m}}\
{(i,S(i)) | i ∈ {1, . . . , n}}. Then Q(P,S) is called abstraction from P (L).

The structure of the situation of definition 2 is highlighted in figure 2. In this
symbolic commutative diagram σ stands for subset inclusion, τ for a cohesion
being valid for a set, and γ for a cohesion being specified by a predicate.

Example 2 We give an example of a cohesion predicate that presupposing particu-
lar universes of discourse either can be abstracted from a given predicate or cannot
be abstracted from the given predicate.

Let I be a modeler and T = {EMPLOY EE} a singleton notion set. Let fur-
thermore be m = 3 and L : {1, 2, 3} → T , i 7→ EMPLOY EE. Let P (L) be the
cohesion predicate ”is child of” specifying a cohesion CL that I considers to be valid
for an employee set {e, f, g} iff g is a common child of f and g. The (non-optional)
roles introduced by P (L) are R1 = father, R2 = mother, and R3 = child. Let
furthermore be n = 2 and S = {(1, EMPLOY EE), (2, EMPLOY EE)} ⊆ L.
Let P (S) be the cohesion predicate ”spouse” specifying the cohesion CS that I

considers to be valid for an employee set {e, f} iff e and f are married to each
other. Let the roles being introduced by P (S) be RS

1 = husband and RS
2 = wife.

Then P (S) (presupposing an idealized conservative universe of discourse in which
employees -sooner or later- have common children iff they -again sooner or later-
are married to each other) equals P (Q,S) and thus can be abstracted from P (L)
by applying A(P,Q, I). However, regarding a universe of discourse in which em-
ployees e, f exist who are married without ever having common children P (S) is
not equal to P (Q,S) since in this universe of discourse the cohesion CS would be
considered valid for {e, f} but could not be extended to a set {e, f, g}, for which
CL would be valid, for all employees g. In the modified universe of discourse the
”spouse” predicate thus could not be considered as an abstraction of the ”is child
of” predicate.

Example 3 We show below that two abstraction concepts that are well-known in
conceptual modelling can be understood as abstraction in the sense of definition
2. In the sequel let I be an individual who has identified a universe of discourse
UoD. In the sense of an a-priori semantics (as mentioned above) we presuppose
that with respect to UoD the meaning of ”generalization”, ”super entity type” and
”subentity type” as well as ”aggregation”, ”whole entity type” and ”part entity type”
are defined (and that these definitions are consistent with the general usage of the
terms). Consider for simplicity the case of an extended Entity-Relationship model.

• Let m be a positive integer and T be a set of notions from UoD that have
been classified as value type. Let further E be an entity type from UoD. Let
L be a sequence of length m over T ∪ {E}, and P (L) the cohesion predicate
that specifies the cohesion CL being valid for e ∈ ε(E) and values vi ∈ ε(L(i)),
∀i ∈ {1, . . . ,m}, iff {v1, . . . , vm} exactly is the set of attribute values of e.
Let S be a proper subsequence of L of length n, G an entity type from UoD

the attributes of which exactly are the elements (i,S(i)). Then Q(P,S) is
the predicate specifying the cohesion CS that for each g ∈ ε(G) is valid iff

{w1, . . . , wn} is exactly the set of attribute values of g, where wi ∈ ε(S(i))
holds for i ∈ {1, . . . , n}. Then A(P,Q, I) is an abstraction that obtains G as
super entity type or generalization of E.

• Let m be a positive integer and T be a set of notions from UoD that have
been classified as entity type. Let furthermore W be an entity type from
UoD and L be a sequence of length m over T ∪ {W}. Let W be defined as
the aggregation of the sequence items different from W . Denote the cohesion
predicate with P (L) specifying the cohesion CL that is valid for a set {pi |
i ∈ {1, . . . ,m} , pi ∈ ε(L(i))} of part entities and a whole entity w ∈ ε(W) iff
the set {pi | i ∈ {1, . . . ,m}} exactly is the set of parts of w. Let (i, L) ∈ L
and S = {(i, L)}. Then the whole-part cohesion between w ∈ ε(W) and
its parts in ∪j∈{1,...,m}\{i}ε(S(j)) is CS and the predicate specifying it is
Q(P,S). Then the predicate A(P,Q, I) means to obtain a part entity-type
L(i) as an abstraction of the whole entity type W . This kind of abstraction
already was investigated in [Kas96].

Example 4 We show that finite structures over a given signature can be specified
by a cohesion predicate. We furthermore show that substructures of finite structures
can be understood as abstractions from their super structures. We first introduce
the necessary terminology and specify then the cohesion predicate P (L) and show
which subsequences S of L to chose for deriving substructures by abstraction from
their super structures. The construction will make it evident that abstractions can
be chosen that do not result in substructures

Let Sorts, Ω and < respectively be finite sets of so-called sorts, function symbols
and relation symbols. Then a signature Σ is a four-tuple (Sorts,Ω,<, arity),
where arity is a mapping arity : Ω ∪ < → Sorts∗ × Sorts that assigns to each
function symbol or relation symbol ξ its type arity(ξ), i.e., the input sorts s1, . . . sx

and its output sort s. A finite structure A over Σ is a triple ({As}s∈Sorts,O,R)
if (1) As is a finite set

1, ∀s ∈ Sorts, (2) ∀o ∈ O∃ω ∈ Ω, such that o : As1
×

. . . × Asx
→ As and arity(ω) = (s1 . . . sx, s), and (3) ∀r ∈ R∃ρ ∈ <, such that

r ⊆ As1
× . . .×Asy

×As and arity(ρ) = (s1 . . . sy, s). See, e.g. [EMC
+99] for more

detail on structures. Let A = ∪s∈Sorts{s} ×As and call it the support of A. Let
for x ∈ Ω ∪ < ∪ O ∪ R ∪ A be x∗ the individual notion of x, i.e., the notion with
ε(x∗) = {x}. A substructure B of a structure A over a signature Σ is a structure
over Σ on a support B ⊆ A such that the restriction of mappings and relations
from A to B respectively is a mapping or relation of B.

Let now be Σ = (Sorts,Ω,<, arity) a signature and A a structure over Σ. Let
further be m =| Ω | + | < | + | O | + | R | + | A | and T = {x∗ | x ∈ Ω ∪ < ∪
O ∪R ∪ A}. Let finally be L : {1, . . . ,m} → T be an injective sequence of length
m over T and P (L) the cohesion predicate specifying the cohesion CL : P({(i, ei) |
i ∈ {1, . . . ,m}, ei ∈ ε(L(i))}) → {true, false} for which the set P2 of second
components of ∪CL(S)=trueC

−1
L (S) contains all support elements, all mappings and

1Rather than with As the set interpreting sort s in A often is denoted with sA.

relations from A, and all function- and relation symbols in Σ, and either of the
following cases holds for each subset S of {(i, ei) | i ∈ {1, . . . ,m} ei ∈ ε(L(i))}:

1. S contains exactly one function symbol σ ∈ Ω with type arity(σ) = (s1 . . . sx, s),
exactly one mapping f : As1

× . . . × Asx
→ As and nothing else apart from

a1 ∈ As1
, . . . , ax ∈ Asx

, a ∈ As, with f(a1, . . . , ax) = a.

2. S contains exactly one relation symbol ρ ∈ < with type arity(ρ) = (s1 . . . sy, s),
exactly one relation r ⊆ As1

× . . . × Asy
× As and nothing else apart from

a1 ∈ As1
, . . . , ay ∈ Asy

, as
1, . . . , a

s
z ∈ As with r(a1, . . . , ay) = {a

s
1, . . . , a

s
z}.

The cohesion predicate P (L) specifies the structure A. Choosing subsequences
L of S that are complete with respect to application of the contained functions
and relations results in a cohesion CS that is specified by the predicate Q(P,S)
and determines a substructure of A. Obviously all substructures of A can thus be
abstracted from A by the procedure characterized by A(P,Q, I).

Remark 1 Structures are of particular interest for Applied Informatics since they
appear to be natural candidates for mathematical models of semantic models. We
show below how -at the syntactical level- a simple version of the ER-model (ERM)
can be modelled as a signature. The structures over ERM would then be considered
as ER-models. It is a straightforward task to invent comparable mathematical mod-
els for other semantic models such as Petri Nets or State Charts. Note, however,
that in general a variety of candidates can be defined and one needs to make a
reasonable choice.

According to the meta model in figure 1 we define this version of the ER-model
to consist of the modelling notions entity type and value type and the ab-
straction concepts association type and characteristic type. We only in-
troduce the one perspective role and the constraint type participation con-

straint. These notions respectively are referred to as E,V,A,C,R and P. We
define a signature ERM = (Sorts, {πR}, {γE , γA, ρ}, arity) where arity is defined
as arity : {πR, γE , γA, ρ} → Sorts∗ × Sorts, with Sorts = {E, V,A,C,R, P} and
arity(πR) = (R,P), arity(γE) = (V E,C), arity(γA) = (V A,C), and arity(ρ) =
(EA,R).

Let B be a structure over ERM . Denote its mapping with πB
R and denote its

relations (in the canonical way) with γB
E , γB

A , ρB . Then γB
E , γB

A respectively specify
the characteristics ce, ca that associate a given value type v (i.e., an element of
V B) to a given entity type e (i.e., an element of EB) or a given association type a

(i.e. an element of AB) meaning that ce or ca associates v to e or to a. Similarly,
the relation ρB associates to an entity type e and an association type a the roles
r1, . . . , rs ∈ RB that e plays in a. Finally the mapping πB

R associates to each role r
the participation constraint p that restricts the participation of the entities x ∈ ε(e)
in associations y ∈ ε(a). Clearly, given an ER-model B over ERM a database can
be specified by interpreting its entity types, association types and value types as

the respective notion extent and doing the same thing regarding the function and
the relations of B.

Remark 2 Referring back to our short account of Stachowiak’s model theory it is
a reasonable idea, to define for a signature Σ and finite structures A,B over Σ: A
is a model of B if there respectively exist substructures SA and SB of A and B that
are isomorphic to each other. Then models of structures appear to be abstractions
of structures but not vice versa.

5.2 A few generic conceptual frameworks

Several cohesion predicates in IS are frequently used as conceptual framework re-
garding which abstraction is carried out. To discuss these let I be an individual
introducing them and having a particular universe of discourse UoD defined for
each of the conceptual framework in the following bullet points.

• System. Letm = 5 and T = {S, In,Out,R,C} be a set of notions from UoD

such that ε(X) is a singleton set the element of which is denoted by ε(X), for
each X ∈ T . Let L : {1, . . . , 5} → T , 1 7→ S, 2 7→ In, 3 7→ Out, 4 7→ R, and
5 7→ C. Let P (L) be the cohesion predicate specifying the cohesion CL, which
I considers to be valid iff ε(In), ε(Out), ε(C) respectively are sets of so-called
inputs, outputs and system components and ε(R) ⊆ ε(In) × ε(Out)
and ε(S) is the so called system that consists of the system components
and that realizes the input-output relation ε(R). Let I presuppose this
relation being realized in the following way: Firstly, all system components
are capable of exchanging (parametric) service requests. Secondly, all system
components can meet a (component specific) set of such service requests
and reply an appropriate result. Thirdly, for each system input there is a
system component that takes this input as a service request. Fourthly, for
each system input i in a sequence of service requests and result provisions a
system output o is determined such that (i, o) ∈ ε(R).

The individual I may additionally introduce subsequences of L of length
1 as S4 = {(4, R)} and S5 = {(5, C)}. These then give rise to the pred-
icates Q(P,S4) and Q(P,S5) that specify the cohesions CS4

and CS5
and

respectively introduce the perspectives ”what” and ”how” as the abstraction
denoted by A(P,Q4, I) and A(P,Q5, I).

The component interaction is often understood as an exchange of matter,
energy or information. However, the interaction may also be considered as a
purely logical one. See, e.g. [Wym84, VG91, Luh02] as introductory texts into
system theory. See finally [Ste90] concerning the origin of the system concept
and its relevance during the European reformation and for hermeneutics.

• Space. Let m = 5 and T = {S,L,O, T, f} be a set of notions from UoD

such that ε(X) is a singleton set the element of which is denoted by ε(X),

for each X ∈ T . Let L : {1, . . . , 5} → T , 1 7→ S, 2 7→ L, 3 7→ O, 4 7→ T , and
5 7→ f . Let P (L) be the cohesion predicate specifying the cohesion CL, which
I considers to be valid iff ε(S) is the so-called space, ε(L), ε(O) are sets that
respectively contain locations and objects, which may be attached to these
locations, ε(T) ⊆ ε(L)×ε(L) is a location transition relation (specifying which
locations of the space are connected) and ε(f) : L→ O is a partial mapping
specifying the objects that are attached to locations within the space.

The individual I may additionally introduce subsequences of L of length 1
as S2 = {(2, L)} and S3 = {(3, O)}. These then give rise to the predicates
Q(P,S2) and Q(P,S3) that specify the cohesions CS2

and CS3
and respec-

tively introduce the perspectives ”where” and ”what” as the abstraction de-
noted by A(P,Q2, I) and A(P,Q3, I).

The locations may be characterized by a scale value for each out of a set
of so-called dimension along which the space unfolds. As was the case with
the component interaction in a system, the space can be a logical space
and the occupation relation be a logical one. For a very brief exposition of
Kant’s position characterizing our ordinary everyday space as a necessary
precondition of all perception see [RM98].

• Field. Let m = 6 and T = {F,L, S,M, f} be a set of notions from UoD

such that ε(X) is a singleton set the element of which is denoted by ε(X), for
each X ∈ T . Let L : {1, . . . , 6} → T , 1 7→ F , 2 7→ L, 3 7→ L, 4 7→ S, 5 7→M ,
and 6 7→ f . Let P (L) be the cohesion predicate specifying the cohesion CL,
which I considers to be valid iff ε(F) is the so called field that has a set ε(L)
of locations at which a directed force drives particles of a given mass into a
location with a certain strength. The directed force is given by the mapping
ε(f) : ε(L)× ε(M)→ ε(L)× ε(S).

The individual I may introduce subsequences of L of length 1 as S2 =
{(2, L)} (source location), S3 = {(2, L)} (target location), and S4 = {(4, S)},
(strength). These give rise to cohesions CSi

that respectively are specified
by predicates Q(P,Si), for i ∈ {2, 3, 4}. These predicates respectively in-
troduce the abstractions A(P,Qi, I) that in turn respectively introduce the
perspectives ”where”, ”whither” and ”how much” on the field.

The directed force represented by ε(f) may be considered as constant or sub-
ject to change in direction, strength or in how it affects particles. To include
this variation into the predicate a further perspective state is required.

• Story. Let m = 10 and T = {B,S,A,O,Z,E,M, p, f, g} be a set of notions
from UoD such that ε(X) is a singleton set the element of which is denoted
by ε(X), for each X ∈ T . Let L : {1, . . . , 10} → T , 1 7→ B, 2 7→ S, 3 7→ A,
4 7→ O, 5 7→ Z, and 6 7→ E, 7 7→ M , 8 7→ p, 9 7→ f , and 10 7→ g. Let P (L)
be the cohesion predicate specifying the cohesion CL, which I considers to
be valid iff ε(B) is the so-called story board that respectively has sets ε(S),
ε(A), ε(O), ε(Z), ε(E), ε(M), of scenes, actors, operations, tendencies,

events, and media actors, and where ε(p) ⊆ ε(S)×ε(S) is the so-called plot2,
a relation specifying succession of scenes, and where ε(f) : ε(S) × ε(A) →
ε(Z) is a mapping specifying the tendencies of actors in scenes, and where
ε(g) : ε(S)×ε(A)×ε(E)→ ε(O)×ε(M) is a mapping specifying the operation
and the media used by an actor to do it and that are triggered by an event
in a scene.

The individual I may introduce subsequences Si of L of length one as Si =
{(i,L(i))}, for i ∈ {2, . . . , 7}. These give rise to predicates Q(P,Si) that spec-
ify cohesions CSi

and allows the abstractions A(P,Q(P,Si), I) to be carried
out. These then define the perspectives ”context”, ”who”, ”what”, ”what
for”, ”why” and ”whereby” on stories.

These predicates are capable of being used several at a time. For example it is
possible to consider a system of spaces and fields or a field superposing a space or
similar.

The system predicate has found a number of quite well known applications in
IS. To perhaps a lesser degree this holds true for the space predicate: Name-,
information-, problem-, and solution spaces are in use. Functional modelling (see
[RBP+91]) appears to be an example for the use of the field predicate. However,
it is only used in a restricted form where the field strength is constant over all
locations of the field and only one particle type, i.e., data is used. Furthermore
state charts ([HN96, Har87]) and Petri Nets appear as an example of the field
framework. The story predicate was extensively used in story boarding (see, e.g.
[KSWM03, SKMW02] and the references given there). In this context the story
predicate is used for the development of Web information systems and describes
customer interaction with such systems. The Zachman Framework can be seen as
significantly overlapping the views of the story framework. See figure 3 for the more
important of our conceptual framework interrogatives and the Zachman framework
interrogatives being integrated.

An entity that is considered as being used in one of these predicates can be turned
into a subject or result of abstraction. One can prescind of everything in the
respective predicate that is not related to the role of this entity. In the space
framework, e.g. one can prescind from the particular thing that occupies a certain
location and only consider the location as important. This is how localization
abstraction (see, e.g. [Tha00]) could be explicated.

6 Resume

Above we have argued that abstraction in the sense of prescinding from certain
aspects of a phenomenon should take place in a conceptual framework that can

2Plots of movies sometimes have more than one end. This is the case, e.g. for ”A Perfect

Murder” with Michael Douglas starring. We therefore do not restrict the plot to be a linear

order. In particular there could quite well be several different beginnings.

perspective

where

what

for

who

where-

by

whither

how
when
 why
what

Figure 3: Zachman’s basic angles and 3 perspectives added

guarantee that no undesirable effects result from the abstraction carried out. We
have discussed the concept of semantic model. A semantic model according to our
definitions is a system of modelling notions and abstraction concepts. The latter
in turn are defined to consist of perspectives. We have argued that the Zachman
framework essentially applies this idea to enterprizes. We have then shown how
the idea to carry out abstraction within a predefined conceptual framework can be
turned into a definition of (a particular model of) abstraction. We finally have spec-
ified a number of generic conceptual frameworks that, as we believe, are frequently
used in information systems development as context of abstraction.

References

[AU96] V. Aho, Alfred and D. Ullman, Jeffrey. Informatik, Datenstrukturen und

Konzepte der Abstraktion. International Thomson Publishing GmbH, Bonn
et al., 1996.

[BS98] Peter Bernus and Günther Schmidt. Architecture of information systems. In
Peter Bernus, Kai Mertins, and Günther Schmidt, editors, Handbook on Ar-

chitectures and Information Systems, chapter 1, pages 1 – 9. Springer Verlag,
Berlin et al., 1998.

[Che76] Peter P. Chen. The Entity-Relationship Model: Toward a Unified View of
Data. ACM Transactions on Database Systems, 1(1):9–37, 1976.

[EMC+99] Hartmut Ehrig, Bernd Mahr, Felix Cornelius, Martin Große-Rhode, and
Philip Zeitz. Mathematisch-strukturelle Grundlagen der Informatik. Springer
- Verlag, Berlin, Germany et al., 1999.

[Har87] David Harel. Statecharts: a Visual Formalism for Complex Systems. Science
of Computer Programming, 8:231–274, 1987.

[HK87] Richard Hull and Roger King. Semantic Database Modeling: Survey, Ap-
plications, and Research Issues. ACM Computing Surveys, 19(3):201–260,
1987.

[HK90] Richard Hull and Roger King. A Tutorial on Semantic Database Modeling. In
A. F. Cardenas and D. McLeod, editors, Research Foundations in Object Ori-

ented and Semantic Database Systems, pages 1–33. Prentice Hall, Englewood
Cliffs, New Jersey, 1990.

[HKL95] Rudy Hirschheim, Heinz K. Klein, and Kalle Lyytinen. Information Systems

Development and Data Modeling, Conceptual and Philosophical Foundations.
Cambridge University Press, Cambridge, 1995.

[HN96] David Harel and Amnon Naamad. The STATEMATE Semantics of Stat-
echarts. ACM Transactions on Software Engineering and Methodology,
5(4):293–333, Oktober 1996.

[Kas96] Roland Kaschek. Inheritance as a Conceptual Primitive. In Bernhard Thal-
heim, editor, Conceptual Modeling- ER’96, pages 406–421, Berlin, Heidelberg,
1996. Springer-Verlag.

[Kel95] Rudi Keller. Zeichentheorie. Francke Verlag, Tübingen, Basel, 1995.

[KST03] Roland Kaschek, Klaus-Dieter Schewe, and Bernhard Thalheim. Modeling
context in web information systems. In Short Paper of CAiSE’03, Berlin et
al., 2003.

[KSTZ03] Roland Kaschek, Klaus-Dieter Schewe, Bernhard Thalheim, and Lei Zhang.
Integrating context in conceptual modeling for web information systems.
2003. WES’03 Proceedings, 2003.

[KSWM03] Roland Kaschek, Klaus-Dieter Schewe, Catherine Wallace, and Claire
Matthews. Story boarding for web-based information systems. 2003. Ac-
cepted for publication as book chapter.

[LM78] Peter C. Lockemann and Heinrich C. Mayr. Rechnergestützte Information-

ssysteme. Springer-Verlag, Berlin, Heidelberg et al., 1978.

[Lud03] Jochen Ludewig. Models in software engineering - an introduction. Soft-

ware and Systems Modeling, 2(1):5 – 14, March 2003. Reworked version of
Ludewig’s presentation at ”Modellierung 2002”.

[Luh02] Niklas Luhmann. Einführung in die Systemtheorie. Carl-Auer-Systeme Ver-
lag, Heidelberg, 2002.

[Mat02] Margaret W. Matlin. Cognition. John Wiley & Sons, New York et al., 5th.
edition, 2002.

[May94] Heinrich C. Mayr. Charakterisierende Objekte: Ein Modell für die Objek-
torientierte Analyse mit oder ohne Assoziationen. In Udo W. Lipeck and
Gottfried Vossen, editors, Formale Grundlagen für den Entwurf von Infor-

mationssystemen, pages 59 – 62. University of Hannover, 1994. Published in
the series ”Informatik - Berichte”, No. 03/94.

[MCF03] Stephen J. Mellor, Anthony N. Clark, and Takao Futagami. Model-Driven
Development. IEEE Software, 20(5):14 – 18, September/October 2003.

[Myl98] John Mylopoulos. Characterizing Information Modeling Techniques. In Peter
Bernus, Kai Mertins, and Günter Schmidt, editors, Handbook on Architectures

of Information Systems, chapter 2, pages 17–57. Springer-Verlag, Berlin, Hei-
delberg, New York, 1998.

[PM88] Joan Peckham and Fred Marjanski. Semantic Data Models. ACM Computing

Surveys, 20(3):153–189, 1988.

[Pol88] George Polya. How to Solve It. Princeton University Press, Princeton, New
Jersey, 1988.

[Qua85] Edward S. Quade. Predicting the consequences: Models and modeling. In
Hugh Miser and Edward S. Quade, editors, Handbook of systems analysis:

overview of uses, procedures, applications and practice, pages 191 – 218. El-
sevier Science Publishing Co., Inc., New York, 1985.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-Oriented Modeling and Design. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1991.

[RM98] Arnim Regenbogen and Uwe Meyer. Wörterbuch der philosophischen Begriffe.
Felix Meiner Verlag, Hamburg, 1998. begründet von Friedrich Kirchner und
Carl Michaelis, fortgesetzt von Johannes Hoffmeister und von den Autoren
vollständig neu herausgegeben.

[Rot89] Jeff Rothenberg. The nature of modeling. In Lawrence E. Widman, Ken-
neth A. Loparo, and Norman R. Nielson, editors, Artifical intelligence, sim-

ulation, and modeling, pages 75–92. John Wiley & Sons, Inc., New York et
al., 1989.

[SKMW02] Klaus-Dieter Schewe, Roland Kaschek, Claire Matthews, and Catherine Wal-
lace. Modeling web-based banking systems: Story boarding and user profiling.
In Heinrich C. Mayr and van den Heuvel, Willem-Jan, editors, Proceedings
of eCoMo 2002, Springer LNCS, Berlin et al., 2002. Springer - Verlag.

[SS77a] John Miles Smith and Diane C. P. Smith. Database abstractions: Aggrega-
tion. Communications of the ACM, 20(6):405–413, Juni 1977.

[SS77b] John Miles Smith and Diane C.P. Smith. Database abstractions: Aggregation
and generalization. ACM Transactions on Database Systems, 2(2):105–133,
1977.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer Verlag, Wien, New
York, 1973.

[Sta83] Herbert Stachowiak. Erkenntnisstufen zum Systematischen Neopragma-
tismus und zur Allgemeinen Modelltheorie. In Herbert Stachowiak, editor,
Modelle-Konstruktionen der Wirklichkeit, pages 87–146. Wilhelm Fink Ver-
lag, München, 1983.

[Sta92] Herbert Stachowiak. Modell. In Helmut Seiffert and Gerard Radnitzky,
editors, Handlexikon Zur Wissenschaftstheorie, pages 219–222. Deutscher
Taschebuch Verlag GmbH & Co. KG, München, 1992.

[Ste90] Karl Steinbacher. System, Systemtheorie. In Hans Jörg Sandkühler, editor,
Europäische Enzyklopädie zu Philosophie und Wissenschaften, volume 4th.,
pages 500–506. Felix Meiner Verlag GmbH, Hamburg, 1990.

[SZ92] John F. Sowa and John A. Zachman. Extending and formalizing the frame-
work for information systems architecture. IBM Systems Journal, 31(3):590
– 616, 1992.

[Tha00] Bernhard Thalheim. Entity-Relationship Modeling. Springer-Verlag, Berlin,
Heidelberg, 2000.

[Thi92] Christian Thiel. Abstraktion. In Helmut Seiffert and Gerard Radnitzky, edi-
tors, Handlexikon Zur Wissenschaftstheorie, pages 5 – 7. Deutscher Taschen-
buch Verlag GmbH. & Co. KG, München, 1992.

[TL82] Dionysios C. Tsichritzis and Frederick H. Lochovsky. Data models. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1982.

[VG91] John P. Van Gigh. System Design, Modeling and Metamodeling. Plenum
Press, New York, London, 1991.

[WM02] Catherine Wallace and Claire Matthews. Communication: Key to success
on the web. In Heinrich Mayr and van den Heuvel, Willem-Jan, editors,
Proceedings of eCoMo 2002, Berlin et al., 2002. Springer Verlag.

[Wym84] A. Wymore. Theory of Systems. In C.R. Vick and C.V. Ramamoorthy,
editors, Handbook of Software Engineering, pages 119–132, New York, 1984.
Van Nostrand Reinhold.

[Zac87] John A. Zachman. A framework for information systems architecture. IBM

Systems Journal, 26(3):276 – 292, 1987.

