
A Generic Tool Supporting Cache Design and Optimisation

on Shared Memory Systems

Martin Schindewolf1, Jie Tao2∗, Wolfgang Karl3 and Marcelo Cintra4

1Universität Karlsruhe (TH), Zirkel 2, 76131 Karlsruhe, Germany

schindew@ira.uka.de
2Universität Karlsruhe (TH), Zirkel 2, 76131 Karlsruhe, Germany

jie.tao@iwr.fzk.de
3Universität Karlsruhe (TH), Zirkel 2, 76131 Karlsruhe, Germany

karl@ira.uka.de
4University of Edinburgh, Mayfield Road, EH9 3JZ Edinburgh, United Kingdom

mc@inf.ed.ac.uk

Abstract: For multi-core architectures, improving the cache performance is crucial
for the overall system performance. In contrast to the common approach to design
caches with the best trade-off between performance and costs, this work favours an
application specific cache design. Therefore, an analysis tool capable of exhibiting the
reason of cache misses has been developed. The results of the analysis can be used by
system developers to improve cache architectures or can help programmers to improve
the data locality behaviour of their programs. The SPLASH-2 benchmark suite is used
to demonstrate the abilities of the analysis model.

1 Motivation

As Moore’s Law — the number of transistors per die doubles every 18 months — still

holds, higher clock rates for the cores are feasible due to shorter signal distances. Higher

processor speed demands faster access to the requested data. A computer system can not

exploit its computing capacity if the processor spends time waiting for the data to arrive.

Subsequently, the performance increasingly relies on the efficient use of the caches. There-

fore, a high cache hit rate is indispensable. The common approach is to design caches

whose performance is acceptable for a wide range of applications, as this concept yields

the best trade-off between performance and costs. Anyways, if only a few applications

have to be considered, an application specific cache design allows for better performance

and improved energy efficiency. The idea is to perform a cache miss analysis and use the

results to guide the user through the optimisation process. This paper presents a tool, that

helps system developers to discover application specific cache parameters (such as cache

∗Dr. Jie Tao is now at the Institute for Scientific Computing, Forschungszentrum Karlsruhe, Hermann-von-

Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

69



size, line size). Further, programmers are supplied with the cause of the cache miss for

performing source code optimisation (see section 4.2). A concise analysis model is de-

signed and implemented. The analysis is based on the cache event trace acquired from

the SIMICS simulation environment. Cache misses are classified according to their cause.

Analysis results help the designers to deduce the best cache configuration for individual

applications. Furthermore, an interface to an existing visualisation tool is implemented,

enabling a graphical representation of the analysis results. Information in this form allows

the human user to easily detect the optimisation target and identify bottlenecks.

The remainder of this paper is organised as follows. Section 2 first gives a brief introduc-

tion to related work. This is followed by a detailed description of the proposed analysis

model and its implementation in section 3. Evaluation results are presented in section 4.

The paper concludes in section 5 with a brief summary.

2 Related Work

Any cache optimisation, either targeting the cache architecture or the source code, re-

lies on the knowledge about the cache miss reasons. During the last decades, cache

miss analysis is in the focus of computer architecture research. Dubois et al. [DSR+93]

present an approach towards cache miss estimation on multi-processor systems. Their

work defines cache miss metrics assuming infinite caches. Consequently, the caches need

no replacement strategy and reveal no conflict or capacity misses. Under these circum-

stances, their Pure True Sharing Misses are the same as the true sharing misses and

the true sharing invalidation misses (definitions are given in section 3.1.1). Beyls and

D’Hollander [BD01] introduce the reuse distance as a concept for cache miss estimation.

This work implements the reuse distance concept and uses it to distinguish between cold,

conflict and capacity misses. Jeremiassen and Eggers [JE95] demonstrate how compiler

techniques avoid false sharing misses. The techniques identify shared data and use padding

to extend it to the full cache line size.

Our approach combines the methodologies of the first and the second work. Similar to

the first work, we consider multi-processor systems and, hence, also calculate coherence

misses. Furthermore, we incorporate the cache metrics of the second work to target real-

istic cache architectures. An accurate algorithm was designed for this computation.

3 The Cache Model

The base of the analysis model is a cache event trace that records every cache event. The

g-cache module of SIMICS generates this event trace. The parse simics conf tool captures

the cache configuration and delivers it to the analysis tool. The analysis tool processes

every cache event and classifies the misses.

For accuracy and flexibility we used SIMICS to provide the cache event trace. SIMICS

is an efficient and instrumented system level instruction set simulator [Rev06]. SIMICS

70



simulates the hardware running the operating system and the application. Caches are con-

figurable modules called g-cache.

3.1 Tool Chain

SIMICS

g-cache module

cache event trace

parse simics conf

traces for

YACO

sharing miss

classification

analysis

model

Figure 1: Tool chain interfacing with SIMICS.

Figure 1 depicts the interface between SIMICS and the developed tool, where the left side

represents the simulation environment and the right side shows our own work. The g-cache

module of SIMICS was slightly modified in order to capture the cache events, which are

written to a trace file. Each cache event is processed by the analysis model. For this task

the analysis model also needs the cache configuration parameters which have been used

by SIMICS to generate the trace. This information is delivered by the parse simics conf -

tool. The main work of the analysis model is to find out the reason of each cache miss.

A statistical output is delivered to the user for comparing the cache behaviour of different

configurations. Analysis results are also recorded in traces required by the existing visual-

isation tool YACO. The visualisation presents the analysis results in a user-understandable

way. This helps the programmer to detect access bottlenecks and optimisation strategies.

3.1.1 Cache Miss Categories

Traditionally, cache misses are classified as cold, conflict and capacity misses [HS89].

Cold misses are caused by the first reference. Capacity misses occur when the cache is

smaller than the working set size, while conflict misses occur due to mapping conflicts.

For multi-processor machines the coherence problem has to be solved - this results in

coherence misses. When many processors execute an application, data are shared. A write

invalidate protocol invalidates the modified, shared data, thus, causing cache misses. To

see whether the invalidation is necessary, the sharings are differentiated in true sharing (at

least two processors access the same data) and false sharing.

A sharing miss is defined straightforwardly as a miss occurring on an address having a

block address which has been shared. True sharing misses are an inevitable effect of

parallel execution. However, false sharing misses shall be eliminated. Sharing misses are

typically identified by examining whether the miss is caused by an earlier invalidation.

71



Actually, this calculation is not exact, because the replacement strategy might replace the

line before the miss. Then the miss must be attributed to the replacement strategy and not

classified as a coherence miss. This leads to our refined definition of coherence miss:

true sharing invalidation miss (tsim): true sharing miss that would not have been

replaced by the local replacement strategy before the miss.

false sharing invalidation miss (fsim): analogue to the true sharing invalidation miss.

3.1.2 Miss Classification Implementation

In order to classify each cache miss, the cache event trace is processed. The following

subsections give a short description on the implementation of the algorithms.

Recognization of Cold Miss

Each processor records every access to a memory address in a linked list. Subsequently,

the first access to a block address is not found in this list. Therefore, this block address has

not been accessed before by the corresponding processor. Hence, a cold miss is detected.

Detecting Conflict and Capacity Miss

Introduced in [BD01], the reuse distance is the concept to distinguish conflict and capacity

misses. It is defined as the number of unique block addresses between two references to

the same block. We implemented the reuse distance as follows. Every block address

is associated with a reuse distance counter and a time stamp with the date of the last

reference. Every time a miss occurs, the linked list is traversed and the time stamps of

the last reference of the entries and the time stamp of the last reference of the miss are

compared. If the time stamp of the entry is greater than the time stamp of the miss, the

entry’s reuse distance counter is increased by one. This is done because the last reference

to the miss occurred before the last reference to the entry. Therefore, the block address of

the miss is distinct from the other block addresses accessed since the last reference to the

block address of the list entry.

The classification of conflict and capacity miss compares the reuse distance counter of the

miss. If the reuse distance counter is smaller than the number of cache lines, the miss is a

conflict miss. Otherwise, the miss is a capacity miss.

Sharing Invalidation Miss

For recognising the sharing invalidation miss, we apply another definition: set reuse dis-

tance. Based on the reuse distance, the set reuse distance is also the number of unique

block addresses between two accesses to the same block, but only blocks mapped to the

same set with the observed address are counted. This value is used to exclude misses that

are caused by the replacement strategy of the cache.

If a miss is perceived on a sharing, the set reuse distance of that block address is compared

to the number of lines in the set (associativity). If the associativity is equal or less than the

set reuse distance, then this block address would already have been replaced by the LRU

72



t 0 t invalidation t miss t evict

time

Figure 2: Timeline illustrating the sharing invalidation miss.

strategy, resulting in a conflict or capacity miss. Otherwise, a sharing miss is detected

because the replacement strategy would not have evicted this block address. Figure 2

illustrates the sharing invalidation miss. The following terms are applied:

• t0 represents the last reference to this block address which resets the reuse distance

and the set reuse distance instances of this block address. Afterwards, for every

different block address referenced, the reuse distance is increased by one and if the

block belongs to the same set the set reuse distance is accumulated as well.

• tinvalidation represents the time of the invalidation. The sharing of the block address

is classified and saved.

• tmiss represents the time at which a miss occurs on that block address.

• tevict is the point in time, where the LRU strategy would have replaced this block

address.

If tmiss >= tevict, a replacement strategy miss is detected, because the associativity is

equal or less than the set reuse distance. On the contrary, if tmiss < tevict, which cor-

relates with the set reuse distance being less than the associativity, a sharing invalidation

miss is detected (Figure 2).

4 Evaluation

Parameter Value

L1 Line Size 32 Bytes

L1 Associativity 2-way

L1 Replacement Policy Least Recently Used

L1 Write Policy Write Through

L1 Allocate Policy Write Allocate

L2 Line Size 32 Bytes

L2 Associativity 4-way

L2 Replacement Policy Least Recently Used

L2 Write Policy Write Back

L2 Allocate Policy Write Allocate

Parameter private L2 shared L2

Number of Processors 8 8

L1 Number of Caches 8 8

L1 Size (each) 4 KBytes 4 KBytes

L1 Number of Lines 128 128

Coherency Protocol MESI MESI

L2 Number of Caches 8 1

L2 Size (each) 128 KBytes 1024 KBytes

L2 Number of Lines 4096 32768

Coherency Protocol MESI None

Table 1: Common cache parameters (left) and case specific parameters for 8 processors (right).

In order to verify the functionality, the cache analysis model has been evaluated using the

SPLASH-2 benchmark suite. This section first briefly describes the benchmarks and the

results obtained with the multi-processor configuration. Then we show a sample view of

the visualisation.

73



4.1 Results with SMP-architectures

For evaluating the analysis model and achieving valuable conclusions for cache optimisa-

tion, several experiments have been conducted. Throughout these experiments, the caches

are configured as shown in Table 1. This setup allows for examining the SPLASH-2

Benchmark Suite [spl] towards scaling performance on SMP-architectures. SPLASH-2

aims at evaluating cache-coherent shared memory architectures. In order to adapt the

SPLASH-2 programs to the x86 architecture and SIMICS the hints given by [Bar, Hei]

are performed. The m4 macros [Sto], developed by Bastian Stougie [Sto03], are used to

parallelise the benchmark.

Corresponding to the existing and emerging multi-processor cache designs, this experi-

ment examines different structures of the level 2 cache(s), private (each processor has an

exclusive level 2 cache) and shared (one level 2 cache for all processors). Table 1 de-

picts the applied configuration, with the left side for the common parameters and the right

side for the L2 specific one (a sample configuration with 8 processors). This work, as

well as many other studies concerning cache miss estimation, uses normalised miss rates:

missrate = misssum

accesssum∗number of processors
.

4.1.1 Overall Performance

Figure 3: Miss rates grouped by SPLASH-2 programs.

Figure 3 shows the overall miss rate of the benchmarks simulated with 2, 4 and 8 proces-

sors. Two adjacent bars belong to the same number of CPUs, the left bar gives the miss

ratio for privately owned caches, whereas the right bar refers to the shared case. Surpris-

ingly, for all applications with all processor numbers the shared level 2 cache yields better

performance. The improvements of a shared level 2 cache over private level 2 caches, cal-

culated by,
missprivate−missshared

missprivate
, range from 9% (LU with continuous blocks measured

using 2 CPUs) up to 89% (LU with non continous blocks using 2 CPUs).

74



For a better understanding of the reasons for the observed results, the misses are further

classified (according to section 3.1.1).

4.1.2 Miss Characteristics

The analysis model computes accurately the number of misses in each miss category. This

allows us to observe the cause of every cache miss. Figure 4-6 show sample results with

the cholesky, the water-n2, and the lu with non continuous blocks programs.

Figure 4: cholesky program for shared and private level 2 caches.

Cholesky

The cholesky program performs a matrix decomposition using the numerical cholesky

method [WOT+95]. As shown in Figure 4, the reduced cold and capacity miss rates mainly

contribute to the better performance with shared level 2 caches. The conflict misses, on the

other hand, decrease the performance of the shared level 2 caches on 4 and 8 processors.

Figure 5: Water n2 benchmark for shared and private level 2 caches.

Water-n2

The water-n2 benchmark simulates a multi dimensional body [WOT+95]. As shown in

75



Figure 5, the private caches show disadvantageous behaviour concerning the number of

coherence misses and the increasing capacity miss ratio, which rises from ∼0% to 0,11%.

According to [WOT+95], the second working1 set exceeds the capacity of the private

caches. As the private caches become smaller the more processors are used, while the

data set size stays the same, the second working set does not fit in the caches, resulting

in capacity misses. In the shared cases the second working set does not exceed the cache

capacity, as capacity misses do not occur. Additionally, cold and conflict misses are also

decreased with the shared cache.

Figure 6: LU with non continuous blocks benchmark for shared and private level 2 caches.

LU with non continuous blocks

LU with non continuous blocks performs a matrix decomposition using the LU factorisa-

tion. As shown in Figure 6 the only perceived misses using a shared second level cache

are cold misses with a miss rate of around 0,35%. The private case is dominated by co-

herence misses, precisely false sharing invalidation misses, that yield rates between 2,27%

and 2,98%. The true sharing invalidation miss rate is between 0,08% and 0,32%. Thus,

a wrong cache line size is indicated. Compiler techniques, padding data to full cache line

sizes, are indicated to prevent false sharing invalidation misses. Capacity misses are not

detected, which is due to the small benchmark working set size.

Improved Cache Configuration

The analysis of the cholesky and the water-n2 benchmarks reveals conflict misses. In order

to reduce the conflict misses and improve the performance, we increased the level 2 cache

associativity from 4-way to 8-way set-associative and repeated the simulation. The results

of the water-n2 program are shown on the left hand side of Figure 7 and the cholesky

program on the right hand side. The cache miss rate of the water-n2 program improves

by at least 5.3% (4 CPUs with private caches) whereas the cholesky program improves by

at least 1.5% (8 CPUs with private caches) compared to the 4-way set-associative level 2

caches. The increased associativity has a greater effect on the shared level 2 caches as the

1working set 2 corresponds to the second knee of the function in cache size and miss rate

76



Figure 7: Water n2 (left) and cholesky (right) with 8-way set-associative level 2 caches.

conflict misses make up a larger fraction of the overall miss rate. Therefore, the miss rate

benefits more from the decreased number of conflict misses.

Summary

Overall, the shared architecture generally benefits from less cold and capacity misses. The

former can be explained by the fact that shared data only causes one cold miss with the

processor first accessing it. For the latter a larger cache is available for the working set.

In addition, shared caches have no coherence misses. Further, the analysis tool is shown

to be useful. As expected, increasing the cache associativity causes the number of conflict

misses to decrease.

4.2 Visualisation

The analysis results can also be applied to understand the cache and program access pattern

and further achieve an optimised application. For this, YACO is used for representing

the results. YACO [QTK05] is a cache visualisation tool specifically designed for cache

optimisation. It uses a set of several graphical views to guide the user to detect the problem,

the reason, and the solution.

Figure 8 is a sample view used to highlight cache critical variables, i. e. the access bot-

tlenecks. The simplicity of the graphical representation helps the programmer to clearly

identify the bottlenecks throughout program execution. The relation between the name

and the miss rate points the programmer to the variables worth optimising. The fft pro-

gram shows that except umain all other main data structures have to be optimised. In the

next step, programmers can use YACO’s data access and cache views to analyse the access

pattern and further to detect the optimisation strategies. Optimisation examples are found

in [QTK05].

77



Figure 8: YACO’s misses per variable.

5 Conclusion

This work uses an analysis approach to investigate the feature of cache misses on multi-

processor machines. The g-cache module of SIMICS is used to create a cache event trace.

A miss classification model is applied to the cache event trace in order to distinguish cold,

conflict, capacity, and sharing invalidation misses. A component for generating traces

of performance facts, which can be delivered to an existing visualisation tool for graphi-

cal presentation of cache bottlenecks, is implemented as well. The following results are

achieved. For all considered benchmarks the shared level 2 cache is the better choice as it

improves the cache miss rate. The overall advantage of the shared level 2 cache is the lack

of coherence misses.

The best example for an improved cache miss rate by eliminating coherence misses is the

lu with non continuous blocks benchmark. The coherence misses reveal the false sharing

of cache lines.

Other programs as the water-n2 yield better miss rates in the shared case, because the

working set size exceeds the private caches resulting in a higher capacity miss rate.

The results obtained from the cholesky program indicate that the most benefit is drawn

from an increased cache size, as the coherence miss rates are negligible. In the shared

78



cases conflict misses are visible. As shown in section 4.1.2 a higher cache associativity

reduces the conflict misses and increases the performance.

Section 4.2 and section 4.1.2 show how the developed tool can guide the user to an im-

proved adjustment of application and cache.

References

[Bar] Ken Barr. http://kbarr.net/splash2.html. Online; accessed January 2, 2008.

[BD01] K. Beyls and E. D’Hollander. Reuse distance as a metric for cache behavior. In PDCS
’01: Proceedings of the Conference on Parallel and Distributed Computing and Sys-
tems, pages 617–662, August 2001.

[DSR+93] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and P. Stenström. The Detec-
tion and Elimination of Useless Misses in Multiprocessors. In Proceedings of the 20th
International Symposium on Computer Architecture, San Diego, CA, 1993.

[Hei] Wim Heirman. http://trappist.elis.ugent.be/˜wheirman/simics/splash2/. Online; ac-
cessed January 2, 2008.

[HS89] M. D. Hill and A. J. Smith. Evaluating Associativity in CPU Caches. IEEE Trans.
Comput., 38(12):1612–1630, 1989.

[JE95] Tor E. Jeremiassen and Susan J. Eggers. Reducing false sharing on shared memory mul-
tiprocessors through compile time data transformations. In PPOPP ’95: Proceedings
of the fifth ACM SIGPLAN symposium on Principles and practice of parallel program-
ming, pages 179–188, New York, NY, USA, 1995. ACM Press.

[QTK05] B. Quaing, J. Tao, and W. Karl. YACO: A User Conducted Visualization Tool for
Supporting Cache Optimization. In HPCC ’05: High Performance Computing and
Communications: First International Conference, volume 3726 of Lecture Notes in
Computer Science, pages 694–703. Springer, September 2005.

[Rev06] Virtutech AB, Nortullsgatan 15, SE-113 27 STOCKHOLM, Sweden. Simics User
Guide for Unix, February 2006. Simics Version 3.0.

[spl] SPLASH-2: Stanford Parallel Applications for Shared Memory. http://www-
flash.stanford.edu/apps/SPLASH/. Online; accessed January 2, 2008.

[Sto] Bastiaan Stougie. http://kbarr.net/files/splash2/pthread.m4.stougie. Online; accessed
January 2, 2008.

[Sto03] Bastiaan Stougie. Optimization of a Data Race Detector. Master’s thesis, Delft Univer-
sity of Technology, October 2003.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop
Gupta. The SPLASH-2 programs: characterization and methodological considerations.
In ISCA ’95: Proceedings of the 22nd annual international symposium on Computer
architecture, pages 24–36, New York, NY, USA, 1995. ACM Press.

79




