
Discovering Unknown Connections –
the DBpedia Relationship Finder

Jens Lehmann1 Jörg Schüppel1 Sören Auer1,2

lehmann@informatik.uni-leipzig.de joergschueppel@web.de auer@seas.upenn.edu

1Universität Leipzig 2University of Pennsylvania
Department of Computer Science Department of Computer

Johannisgasse 26 and Information Science
D-04103 Leipzig, Germany Philadelphia, PA 19104, USA

Abstract: The Relationship Finder is a tool for exploring connections between objects
in a Semantic Web knowledge base. It offers a new way to get insights about ele-
ments in an ontology, in particular for large amounts of instance data. For this reason,
we applied the idea to the DBpedia data set, which contains an enormous amount of
knowledge extracted from Wikipedia. We describe the workings of the Relationship
Finder algorithm and present some interesting statistical discoveries about DBpedia
and Wikipedia.

1 Introduction

Technologies based on Semantic Web standards are applied to various areas inside and
outside the World Wide Web. A fundamental task is the creation and extension of ontolo-
gies, e.g. using the OWL1 ontology language. In this work, we present a new user interface
allowing to visualise connections in ontologies with large amounts of instance data.

The goal of the DBpedia Relationship Finder2 is to provide a user interface to explore
the huge DBpedia data set[ABK+07] by providing a means to find connections between
different objects. The background knowledge consists of all the facts, which have been ex-
tracted from Wikipedia, in particular the information extracted from infoboxes (see [AL07]
for details). The resulting web application allows the user to enter two objects, which are
described by articles in the English Wikipedia, and computes connections between them.
The application makes heavy use of Web 2.0 concepts like AJAX. The connections are
obtained by querying the RDF data of the underlying triple store. Therefore, the methods
we propose and the user interface we develop can be used for arbitrary triple stores, as
detailed in Section 5, but we will focus on DBpedia within this article. As a by-product of
creating the Relationship Finder, we analysed the DBpedia RDF graph. We will present
some interesting insights we gained.

1http://www.w3.org/2004/OWL
2available at http://wikipedia.aksw.org/relfinder/

99

Overall, the paper makes the following contributions:

• development of a new DBpedia user interface using Semantic Web and Web 2.0
techniques,

• statistical analysis of DBpedia and Wikipedia data,

• a new general RDF browsing interface.

The article is structured as follows: In Section 2 we give a brief overview of the DBpedia
project. We then proceed to showing how we processed the obtained information in Sec-
tion 3. The results of the preprocessing are used as input for the Relationship Finder and,
furthermore, allow to derive some interesting statistics about DBpedia and therefore also
Wikipedia. Section 4 describes the Relationship Finder algorithm and user interface. In
Section 5 we give a different view of the DBpedia Relationship Finder as a general means
to access the contents of RDF triple stores. We describe related work and conclude in
Section 6.

2 The DBpedia Project

The DBpedia project[ABK+07] is a community effort to extract structured information
from Wikipedia and to make this information available on the Web. DBpedia allows you
to ask sophisticated queries against Wikipedia and to link other datasets on the Web to
Wikipedia data. The core of DBpedia is a method to extract RDF triples from the in-
fobox templates used within Wikipedia articles (details can be found in [AL07]). Since
Wikipedia authors developed templates which provide predefined information structures
for a variety of domains the infobox dataset contains data for and relationships between
entities from a multiplicity of knowledge domains. These include cities (4,872), music
albums (35,190), people (19,834), books as well as information about special interest do-
mains such as computer games (365), planes (527) or amphibians (736).

The sheer amount of multi-domain data of the infobox extraction dataset and the inability
of existing tools to handle this amount of data inspired the development of the Relationship
Finder and builds its basis. Besides information extracted from infoboxes, the DBpedia
project also provides datasets containing various other information and metadata about
Wikipedia articles, e.g. article abstracts, information about labels (in different languages),
images and links related to articles and categories. All these datasets are provided for
download as RDF dumps. They are accessible as linked data[BCH07] and available for
querying in form of an SPARQL endpoint.

The DBpedia project also aims to be a hub for user interfaces visualizing DBpedia data
for easy access and browsing by human users. The project comprises a query builder,
a combined full-text and facet-based search interface and is browsable with linked-data
browsers such as Tabulator3 or Disco4. The availability of the DBpedia data in various

3http://www.w3.org/2005/ajar/tab
4http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/

100

forms already stimulated many people to create mashups or specialized user interfaces.
Despite its short time of existence, the DBpedia project already evolved into a crystalli-
sation point for knowledge bases on the Web. The DBpedia datasets are interlinked with
ontologies and knowledge bases such as Wordnet, Musicbrainz and Revyu.

3 Decomposition Algorithm and Statistical Discoveries

This section describes how we pre-processed the DBpedia RDF data to apply the Re-
lationship Finder on it. Note, that the Relationship Finder can work even without this
preprocessing step. However, some of its features will not be available in this case. The
source code of the algorithms presented here and in the following sections are available
within the DBpedia sourceforge project5.

Algorithm 1: RDF Graph Decomposition.
Input: an RDF statements table (a set of triples)
Output: objects separated in components stored in a component table
create necessary database tables;1

filter triples in the statements table and copy them in a table T ;2

initialise an empty queue Q;3

clusterId = 0;4

while T is not empty do5

pick first object O from T and add it at the end of Q;6

write O to component table;7

while Q is not empty do8

find all objects obj, which are object or subject of a triple in T , which contains O9

as subject or object;
forall O� ∈ obj do10

if O� �∈ Q then11

add O� at the end of Q;12

add O� to component table;13

delete triples in T containing O�;14

set O to first object in Q;15

increment clusterId;16

The goal of the pre-processing can be described as follows: We treat the extracted DBpe-
dia infobox graph as an undirected graph and want to find its components, i.e. its maximal
connected subgraphs. (Two objects are in the same component if and only if there exists
a path between them.) Given two objects, this allows us to decide whether they are con-
nected in the underlying RDF graph. If they are not connected, the Relationship Finder can
terminate immediately. If they are connected, we want to be able to find a path between the

5http://dbpedia.svn.sourceforge.net/viewvc/dbpedia/relfinder/

101

Figure 1: Number of triples and objects in the five largest components (ordered by number of ob-
jects).

two objects. While finding the shortest path is the computational most expensive part of
the Relationship Finder algorithm, the pre-processing allows us to derive a (not necessarily
shortest) path between two objects.

Algorithm 1 shows how we decompositioned the RDF graph. It works on an RDF state-
ments table. Before applying the algorithm, we filter all triples, which we want to use,
e.g. those not containing literal values, and copy them into a separate table. This filter can
be configured to include or ignore certain types of triples if desired. The filtered DBpedia
infobox data set still contains 1.5 million triples. We start from an arbitrary object and
use a breadth first strategy to find all connected objects, i.e. all other objects within the
component. The decomposition results are stored in database tables. For each object, we
store its component id (the id of the component it belongs to), the minimum distance from
our starting object within the component, and the object and property linking to the next
object on the path to the starting object within the component. Please note, that the algo-
rithm itself is not novel, but a straightforward application of existing techniques to RDF
triple stores.

We determined that on average each DBpedia object has 5.67 outgoing connections, i.e. start-
ing from an arbitrary object 5.67 other objects are directly connected. Considering outgo-
ing connections of length two, 18 objects can be reached.

When running the cluster algorithm, we also generated some statistical information about
the DBpedia components. Figure 1 shows the five largest components we obtained. Note
the logarithmic scale on the y axis. We can see that almost all of the objects and triples
are in the largest cluster. It accounts for 91% of all objects and 96% of all triples in the

102

Figure 2: Number of objects with regard to the distance from a origin object.

DBpedia Infobox data set. This indicates that the DBpedia data set is densely connected,
because starting from an arbitrary object in DBpedia (and therefore Wikipedia) this means
you can reach almost any other object through properties in the DBpedia Infobox data set.
This is one reason why it is interesting to construct a Relationship Finder, which allows to
uncover these often interesting and surprising connections.

Figure 2 is another indicator of the density of the DBpedia RDF graph. As shown in
Algorithm 1, we compute the components by starting with an arbitrary object. The figure
shows the distance of any object in the main cluster from this starting object. Almost all of
the objects have a distance between 5 and 9 from the starting object and are, thus, within a
short distance from the starting object. The figure has to be interpreted cautiously, because
it depends on the (randomly selected) starting object. A more comprehensive analysis is
subject to further work.

4 The Relationship Finder

This section describes the actual Relationship Finder web application based on the decom-
position introduced before. We will first describe the user interface and then explain the
underlying algorithm.

User interface. The Relationship Finder user interface is very intuitive. Initially, it con-
tains a simple form to enter two objects, as well as a small number of options, and a list
of previously saved queries. For entering objects, the user can utilize the autocomple-
tion feature (see Figure 3), which is implemented using the freely available Scriptacolous
JavaScript library6. While typing, the user is offered suggestions for the object he wants

6http://script.aculo.us/

103

to enter. The corresponding database queries are performed in the background and loaded
into the displayed Web page using AJAX technology. After submitting the query by click-
ing the ”find relation” button, the Relationship Finder algorithm starts. First, the user is
informed whether a connection between the objects exists. If such a connection exists,
the user can, furthermore, preview a connection between the objects (see Figure 4). The
details of this procedure are explained later.

Figure 3: Autocompletion feature.

The preview connection does not have the guarantee to be the shortest available connec-
tion. For this reason, the Relationship Finder tries to find shorter solutions. When it has
finished the computation, a configurable number of different connections is presented.
Each connection is shown as a path where the leftmost part is the first entered object and
the rightmost part is the second entered object. In between are the objects and properties,
which connect these. Note, that the property arrows go in both directions, because we treat
the underlying RDF graph as undirected.

Every object contains two additional buttons: The first one opens a box, which displays
the available knowledge about this object. This information is retrieved from the state-
ments database table using AJAX. The box parses information into user friendly formats,
e.g. connections to other objects are shown as links, connection to images are directly
displayed as image, and lists are recognised and displayed as such. All objects are trans-
formed to links to the corresponding Wikipedia articles. The second button, which is
associated with each object (and also each property in this case) is an ignore button de-
picted by a red cross. This allows to add objects and properties to an ignore list, i.e. the
user states that in the next query he wants to ignore all connections containing these ob-
jects or properties. This list can also be edited by hand, again using autocompletion as a
useful feature. Figure 5 shows a screenshot where both additional buttons are used.

After a query has been executed, the user can save it to make it available for other users.
It is then displayed in the list of previously saved queries. This list can be ordered by
popularity and query creation time. The results of these saved queries are cached, such
that no significant server load is caused by executing these queries several time.

Technical Implementation. We assume that the components have been computed as
described in Section 3. Another pre-processing step is to generate an undirected version
of the statements table. This means that for each S-P-O triple, another O-P-S triple is
written. This is done, because we consider the underlying RDF graph as undirected. The
main reason why we are performing this as a pre-processing step (instead of the core
algorithm) is efficiency.

104

Figure 4: Precomputed connection between two objects.

Algorithm 2 shows the base structure of the Relationship Finder algorithm. Some parts
will be explained in more detail in the next paragraphs.

Line 2 states that a minimum and maximum distance between two objects O1 and O2

according to the components table are computed. This is done as follows: Let OS be the
starting object in the component of O1 and O2. From the components table we can obtain
the two paths from O1 to OS and O2 to OS , respectively. The minimum distance min is
then:

min = |distance(O1, OS) − distance(O2, OS)|

This follows from the fact that we used breadth first search in Algorithm 1, i.e. we know
that the computed distances between an object and the starting object within a component
are minimal. Say distance(O1, OS) < distance(O2, OS) (without loss of generality), then
the existence of a path with length smaller than min between O1 and O2 would imply that
distance(O2, OS) is not minimal, which is a contradiction.

Similarly, the maximum length is the sum of the distances. However, in this case we can
give a better estimate. We can look for objects, which the paths from OS to O1 and OS

to O2 have in common. If OC is such an element, then O1 − . . . − OC − . . . − O2 is a
possible path from O1 to O2. We pick the common element, which minimises the length
of such a path (due to OS there is always a common element). The path we obtain is the
one shown in the preview of the DBpedia Relationship Finder and its length is an upper
bound of the length of the shortest path between O1 and O2.

The next interesting part of the algorithm is line 2, which generates the SQL database query
to find the connections. The generated query contains JOIN operations corresponding
to the current distance we are interested in. The underlying database systems usually
optimise these operations, such that the JOINS are executed in an efficient order. However,

105

Fi
gu

re
5:

B
ox

es
w

ith
ad

di
tio

na
li

nf
or

m
at

io
n

an
d

ig
no

re
lis

to
pt

io
ns

in
th

e
R

el
at

io
ns

hi
p

Fi
nd

er
.

106

Algorithm 2: Workings of the DBpedia Relationship Finder.
Input: first object O1, second object O2, maximum distance dmax, maximum number of

results n, ignore list of objects and predicates
if query has been saved then1

load result from cache;2

else3

if O1 and O2 are in the same component then4

compute minimum distance min and maximum distance max according to5

components table;
compute preview connection and display it;6

set d = min;7

set m = 0;8

while d < dmax and m < n do9

formulate SQL query for obtaining at most (n − m) connections between O110

and O2 of length d without objects and properties in the ignore list;
if connections exist then11

display connections;12

m = m + number of found connections;13

increment d;14

if d = dmax then15
Output: no connections within the specified maximum distance exist

else16
Output: no connection exists, objects in different components

depending on the query, these operations can still be very expensive for high distances,
which is why we limit the distance between the two objects to 10. The SQL query is
extended by constructs, which forbid double occurrences of objects and properties within
a connection. Furthermore, the ignore lists are also taken into account here, i.e. we extend
the query to disallow any of the objects and properties to be ignored in the connection.

5 The Relationship Finder as RDF Userinterface

This section gives some remarks about the use of the Relationship Finder for general RDF
knowledge bases. As noted before, DBpedia is just one interesting application of the
Relationship Finder. However, except for some DBpedia specific features (e.g. links to
Wikipedia corresponding articles) it is not restricted to DBpedia. This is a brief overview
of existing techniques for visualising ontology instance data:

• graphs: tools for navigating along RDF graphs

• tables: data organised in tabular form

107

• triples: data shown as basic triples

• timetables: usage of time oriented presentations, e.g. in personal organisers

• maps: usage of place oriented presentations, e.g. showing data in maps

• mashups: data collected from various sources and displayed together

The Relationship Finder extends this list by displaying a set of paths between two ob-
jects in an RDF graph of interest. A path here can be seen as a selection of interesting
triples. The Relationship Finder is a general purpose user interface (such as graph or triple
visualizations). It is especially suited for knowledge bases, which do not allow other visu-
alization forms (such as graph or triple visualizations) due to their sheer amount of data.

6 Related Work, Conclusions, and Further Work

Related Work. We will first describe work related to the DBpedia project and afterwards
work, which describes interfaces to RDF knowledge bases.

Apart from the DBpedia project, there have been other attempts to extract information
from Wikipedia and make it available for further use. YAGO [SKW07] is an effort, which
extracts 14 relations from the Wikipedia category system, Wikipedia redirects, and other
sources of information within Wikipedia. Freebase7 is a project by MetaWeb8, which has
the goal to build up a huge database of editable information. They used Wikipedia to
reach an initial critical mass of information. Semantic MediaWiki [KVV05, VKV+06] is
an extension of the MediaWiki software, which is the Wiki software underlying Wikipedia.
It allows to add structured data based on RDF to Wikis, which enables information reuse
as well as enhanced search and browse facilities.

Techniques for discovering relationships between objects within knowledge bases were
for example also developed in the course of the SemDis project9. In [AMHWA+05] for
instance, a flexible ranking approach is presented which can be used to distinguish more
interesting and relevant relationships from less important ones. In [AMNR+06], simi-
lar techniques were applied to address the problem of conflict of interest detection by
analysing social networks.

Conclusions. We presented a novel RDF user interface, which is especially applicable
to ontologies with large amounts of instance data. As one example for such an ontol-
ogy, we used the DBpedia infobox data set. We implemented our approach and made it
available online. We incorporated the feedback and feature requests we obtained in this
application. The Relationship Finder uses a combination of existing algorithms in the
background, AJAX technologies for providing a responsive and user-friendly interface,

7http://www.freebase.com
8www.metaweb.com/
9http://lsdis.cs.uga.edu/projects/semdis/

108

and numerous features like saving and caching queries, ignoring objects, and presenting
additional information about objects.

Future Work. Possible lines of future work are to extend the Relationship Finder from
DBpedia infoboxes to other parts of the DBpedia data set, to apply the Relationship Finder
to other knowledge bases, and to improve our analysis of DBpedia/Wikipedia data.

References

[ABK+07] Sören Auer, Chris Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. DBpedia: A Nucleus for a Web of Open Data. In Proceedings of the
6th International Semantic Web Conference (ISWC), 2007. To appear.

[AL07] Sören Auer and Jens Lehmann. What Have Innsbruck and Leipzig in Common?
Extracting Semantics fromWiki Content. In Proceedings of the 4th European Se-
mantic Web Conference (ESWC), pages 503–517, 2007.

[AMHWA+05] Boanerges Aleman-Meza, Christian Halaschek-Wiener, Ismailcem Budak Arpinar,
Cartic Ramakrishnan, and Amit P. Sheth. Ranking Complex Relationships on the
Semantic Web. volume 9, pages 37–44, 2005.

[AMNR+06] Boanerges Aleman-Meza, Meenakshi Nagarajan, Cartic Ramakrishnan, Li Ding,
Pranam Kolari, Amit P. Sheth, Ismailcem Budak Arpinar, Anupam Joshi, and Tim
Finin. Semantic analytics on social networks: experiences in addressing the prob-
lem of conflict of interest detection. In Les Carr, David De Roure, Arun Iyengar,
Carole A. Goble, and Michael Dahlin, editors, WWW, pages 407–416. ACM, 2006.

[BCH07] Christian Bizer, Richard Cyganiak, and Tom Heath. How to publish Linked Data on
the Web. http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/, 2007.

[KVV05] Markus Krötzsch, Denny Vrandecic, and Max Völkel. Wikipedia and the Semantic
Web - The Missing Links. In Jakob Voss and Andrew Lih, editors, Proceedings of
Wikimania 2005, Frankfurt, Germany, 2005.

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A Core of
Semantic Knowledge - Unifying WordNet and Wikipedia. In 16th International
World Wide Web Conference (WWW 2007), Banff, Canada, 2007.

[VKV+06] Max Völkel, Markus Krötzsch, Denny Vrandecic, Heiko Haller, and Rudi Studer.
Semantic Wikipedia. In Les Carr, David De Roure, Arun Iyengar, Carole A. Goble,
and Michael Dahlin, editors, Proceedings of the 15th international conference on
World Wide Web, WWW 2006, pages 585–594. ACM, 2006.

109

