Dealing with knowledge intensive services in e-Government
A case study

Daniela Feldkamp, Knut Hinkelmann, Holger Wache
University of Applied Science Northwestern Switzerland,
Riggenbachstrasse 16, CH-4600 Olten, Switzerland
daniela.feldkamp@fhnw.ch, knut.hinkelmann@fhnw.ch, holger.wache@fhnw.ch

Abstract: Governmental processes are complex and knowledge-intensive. Most process management systems fail to support them in an adequate way. Semantic technologies like Semantic Web Services allow incorporating knowledge in process. But often these techniques are overdimensioned and can not be executed properly. Here we propose a more practical motivated approach where knowledge-intensive parts of a process are controlled, enacted and supported by business rules on top of ontologies. With the help of a case study we demonstrate how to model knowledge-intensive processes.

1 Introduction

Public services are based on legal rules and regulations binding for all municipalities. These rules and regulations are exposed to rapid changes. Furthermore, these processes are dealing with people’s concerns which means they are dealing with different circumstances every time. In this sense e-government services are often knowledge-intensive where in general the actual process execution and the involved participants and administrations depend on various factors including

- exceptional situations
- unforeseeable events
- unpredictable situations, high variability
- highly complex tasks

Consequently knowledge-intensive processes are weakly structured and can only be automated to a very limited extent.

Business process management is one approach to make business agile. In their seminal book on Business Reengineering, Hammer and Champy (HC93) mentioned adaptivity and changes as important challenges of business. This in the end lead to workflow management systems. However, it was realized quite soon, that workflow management systems are mainly useful for production oriented business processes, because these processes are
well-structured. But, they lack flexibility in process execution. To achieve more flexibility also for weakly structured processes, the workflow management systems are advanced towards adhoc workflows, in which the participants can modify the workflow at run time. The flexibility is achieved by intervention of a human. There are only few approaches towards system-supported agility (KH92), (WWT97). But, these approaches are limited in the sense that they rely on predefined workflows or activities. They mainly deal with modifying the logical structure of the workflow neglecting aspects like flexible resource allocation or decision making.

An alternative approach towards agility takes into account that every business application is based on rules to conduct the business logic. (vH02) When compliance requirements increased along with the demand for business flexibility the business rules approach emerged.

To combine the advantages of well-structured processes with the demand for adaptivity and flexibility, the integration of business rules with business process management can be regarded as promising.

In our practical motivated approach we use business rules to represent the knowledge. The knowledge-intensive tasks of a process are separated from the normal control flow and encapsulated in so-called variable processes. Business rules control the enactment of these separated tasks. In the following we explain with the help of a case study how business rules can be used to model flexible process behaviour and how they help to model knowledge-intensive processes in an elegant way. But first we introduce in our case study.

2 Analysis of existing e-government services

To find an appropriate use case we evaluated several e-government services from different municipal authorities. For the case study we selected the Building Permission process of the Stadt Vöcklabruck1 as the most interesting service. It comprises the five following sub-processes:

- **Building Affairs Information Service** (in German: "Baubewilligung Information Service"): In this sub process the citizen navigates on the web site, selects the appropriate service and submits the application form.

- **Application Check** (in German: "Formale Prüfung"): Based on the data the application form the appropriate approval process is selected.

- **Announcing Procedure** (in German: "Bauanzeige"): The applicant provides data about the planned construction. The administration checks whether the construction is according to legal and building regulations.

- **Normal and Simplified Procedure** (in German: "Baubewilligung"): The process flow is like the "Announcing Procedure". In contrast to the "Announcing Procedure" neighbours and other citizens must be involved in the process.

1Web site of Stadt Vöcklabruck: http://www.veecklabruck.at/
- *Compliant Procedure* (in German: “Berufung”): A formal objection is possible against any official notification.

The service is rather complex involving different actors and consisting of several knowledge-intensive tasks. In fact it is hard to model this process with the classical, static process model in an adequate way because of its complexity.

In particular the process ”Application Check” based on the citizens’ application data, the appropriate approval process is selected for our case study because of its complexity. Figure 1 (I) illustrates the process in the traditional way. For example to approve a building application it may be necessary to conduct several checks including inspection on location (task C), approval of application by historical preservation agency (task B), and approval of environmental compatibility (task A). All tasks depend on each other. The control flow in Figure 1 (I) expresses that the outcome of one task (e.g. A) may require the involvement of the other task (e.g. B and/or C). However the outcome of one task also may be that the application will fail; then no further test are required. Incorporating this behaviour in the control flow would increase the complexity enormously. In fact not all aspects of the control can be modelled in an appropriate way.

3 Supporting knowledge-intensive processes

To deal with knowledge intensive services, we separate the knowledge from the process flow. In order to capture the knowledge-intensive parts of processes and to model them declaratively and adequately our approach base on Semantic Web techniques.

Business rules systems only have simple formalism with weak semantics for representing facts and terms, like decision tables. Extending the expressiveness towards ontologies has the advantage of higher expressiveness and the chance to use inferences like inheritance and consistency checking. Ontologies are used to capture the domain knowledge by introducing and relating the terms of the domain. So, it can be seen that terms and facts of business rules can be represented as ontologies.

The business rules refer to the current process. While processes specify a process flow that has to be followed, e.g. for reasons of efficiency and traceability, business rules support flexibility and customization. In particular business rules extend process execution on three ways:

- **Variable process execution**: Determine activities and processes to be executed thereby accounting for dependencies between activities.

- **Intelligent resource allocation at run time**: Selection of employees based on special skills and selection of particular web services adequate for the actual circumstances.

- **Intelligent branching and decision making**: Deriving workflow-relevant data using inferences and computing values.

- **Consistency checking**: Avoid violation of integrity constraints and guidelines.
Variable processes, which could hardly be modelled by the classical strict process model, are replaced by a new object type, labelled with "KIT" (Knowledge-intensive task). This object is related to a pool of activities, which are linked to action-enabling rules. At run time the associated action-enabling rules select the activities that have to be executed depending on the actual context of the process instance. All activities and processes can be linked to inference rules, which allow for resource allocation and support the user in decision making, while integrity constraints and guidelines (in combination with inference rules) ensure consistency checking and compliance.

For Stadt Vöcklabruck we replace knowledge-intensive tasks by "KIT". All possible activities, which should be executed in a specific context, are linked to business rules. Figure 1 (II) illustrates the service model created using our approach. Each of the three tasks is related to an action-enabling rule. These rules are invoked first to dynamically determine and instantiate the appropriate tasks.

The outcome of a process may require the involvement of another task; but here we do not need to express this explicitly. As an effect of the invocation the ontology instances may be modified. As a “side effect” further rules can be fired probably resulting in the instantiation of further tasks. For example, when the historical preservation agency has changed the building project and requests an inspection on location (task C), this results in a change of the application data in the ontology. The action-enabling rule for task C can fire and task C will be instantiated.

Storing rules independent from the flow has the advantage of modifying rules independently from the business logic. For example, the modification of the rule which invoke task A "If the building is closer than 50 meters to natural water" to "If the building is closer than 100 meters to natural water" will result in one modification in our approach.

In the traditional model the expression has to be changed in several switches/gateways.

At the moment we investigate the concrete architecture for invoking the rules in the process.

2 Action enabling rules are rules, which trigger another rule or a process (step) (vH02)
environment. More precisely a BPEL(ACe03) engine is used to execute the standard part of processes but knowledge-intensive and flexible activities are controlled, enacted and supported by an integrated rule engine over the ontologies.\(^3\)

4 Conclusion

Many processes can not be modelled and executed with current workflow engines; even government processes are knowledge-intensive and require flexible execution with the ability to handle exceptions. On the other hand Semantic Web technology offers the ability to incorporate the knowledge into process execution. But current approaches like OWL-S lack a mature implementation and may provide unneeded and immature functionality (S.05). We therefore proposed a more lightweight process execution which incorporates business rules for knowledge-controlled and flexible enactment and ontologies as the common knowledge base.

References

\(^3\)The authors are aware about the limitations to combine ontological (i.e. description logic) reasoning with rule reasoning. First we want to use very restricted representation formalism for rules and ontology. Second the rules are also restricted to access only instances. In consequences our approach may be related to the database-oriented view (cf. (MHS07)).