A technique for information system integration

Sergio Greco, Luigi Pontieri and Ester Zumpano
DEIS - University of Calabria
ISI-CNR -- National Research Council
87030 Rende, Italy
{greco,pontieri,zumpano}@si.deis.unical.it

Abstract: Nowadays, a central topic in database science is the need of an integrated access to large amounts of data provided by various information sources whose contents are strictly related. Often information sources have been designed independently for autonomous applications, so they may present several kinds of heterogeneity. Particularly hard to manage is the semantic heterogeneity, which is due to schema and value inconsistencies. In this paper, we focus our attention mainly on the inconsistency which arises when conflicting instances related to the same concept and possibly coming from different sources are integrated. First, we introduce an operator, called Merge Operator, which allows us to combine data coming from different sources, preserving the information contained in each of them. Then, we present a variant of this operator, the Extended Merge Operator, which associates the integrated data with some information about the process by which they have been obtained. Finally, in order to manage conflicts among integrated data, we briefly present a technique for computing consistent answers over inconsistent databases.

1. Introduction

The problem of integrating heterogeneous sources has been deeply investigated in the fields of multiddatabase systems [Br90], federated databases [Wi92] and, more recently, mediated systems [Wi92] and data warehousing [CD97,In97]. In this paper we deal with the problem of integrating heterogeneous sources using a mediator-based approach. Integrating data from multiple heterogeneous sources determines two main different kinds of inconsistency: schema conflicts, which occur when different sources use different schemas to model the same concept, and data conflicts, which arise when different sources record different values for the same object [Hu97,YO99]. In this paper, we focus our attention on the integration of conflicting instances [Ar95,ABC99,Du96] related to the same concept and possibly coming from different sources. Typically, databases contain intentional knowledge expressed by means of integrity constraints, that give information on the form the data must have. Contraints (such as functional dependencies, inclusion dependencies, etc.) are mainly introduced to prevent incorrect database states. In the approach we propose, a mediator \(M \) integrates the information provided by a set of sources \(D_1,\ldots,D_m \) preserving, as much as possible, the set of constraints defined on each source and on the global view furnished by the mediator. In particular, we define an operator, called Merge Operator, which allows us to complete data contained in each source preserving the integrity constraints defined on it. A variant of the merge operator, especially useful within the materialized view approach, is the Extended Merge Operator, which extends any integrated tuple by storing information
relative to the process by which it has been obtained. Value inconsistencies, i.e. violations of integrity constraints, may be present in the integrated view provided by a mediator. In this paper we just consider inconsistencies related to the violation of functional dependencies. In order to manage this kind of inconsistencies we employ a technique defined in [GZ00], where a general logic framework for computing repairs and consistent answers over inconsistent databases has been proposed. The technique, based on disjunctive programs and stable model semantics, can be used to produce consistent answers over inconsistent database, i.e. maximal set of atoms which do not violate the constraints. The rest of the paper is organized as follows. In Section 2 we present the system architecture used to perform integration process. Section 3 presents the Merge Operator, while the Extended Merge Operator is described in Section 4. Finally, in Section 5 we briefly illustrate the technique introduced in [GZ00], which we use to compute consistent answers over inconsistent mediator views.

2. System Architecture

In order to perform the integration of multiple heterogeneous sources, we use a common architecture based on mediators, shown in Figure 1.

Mediator-based architectures are characterized by the presence of two types of components: wrappers, which translate local languages, models and concepts of the data sources into the global ones, and mediators, which take in input information from one or more components below them and provide an integrated view of it [LRO96,Ga97]. Views, managed by mediators, may be virtual or materialized. When a mediator receives a query, it dispatches subqueries to components below it (wrappers and/or mediators), collects the results and merges them in order to construct the global answer. Mediators provide an integrated view of a set of information sources. Each of these sources may be a source database or a database view (virtual or materialized) furnished by another mediator. We denote the former kind of source by basic source and the latter one by derived source. Similarly, a relation provided by a basic source is said to be a basic relation otherwise it is said to be a derived relation. A mediator has its own schema, that
we call mediator schema, and a set of integrity constraints whose satisfaction means that data are consistent. Integrity constraints, which can also be associated with a source schema, are first order formulas that must always be true. Although in this paper we only consider functional dependencies, our approach to manage inconsistent data is more general. The mediator schema represents, in an integrated way, some relevant concepts that may be modelled differently within the schemas of different sources.

At each level of the integration system, the information provided by different sources and related to the same concept is combined. The necessity of completing the information regarding a concept is due to the fact that some information may not be available at a source because it is not modeled within the schema of the source or simply because some data instances contain undefined values for some attributes. A mediator integrates different sources trying to preserve the available constraints by using one of the merging operators defined in Sections 3 and 4, and manages conflicting values by applying the technique described in Section 5.

3. Data Integration

A mediator has to define the content of any global relation as an integrated view of the information provided by the relations it integrates. We assume that relations corresponding to the same concept and furnished by different sources of a mediator are homogenized with respect to a common ontology, so that attributes denoting the same property have the same name \([YO99]\). Once the logical conflicts due to the schema heterogeneity have been resolved, conflicts may arise, during the integration process, among instances provided by different sources. In particular, the same real-world object may correspond to many tuples, that may have the same value for the key attributes but different values for some non-key attribute.

Let us introduce some simple definitions in order to simplify the description of our approach. We adopt the relational model for referring to schemas and instances pertaining to the mediator and the sources it integrates.

Let \(R\) be a relation name, then we denote by: \(\text{attr}(R)\) the set of attributes of \(R\); \(\text{key}(R)\) the set of attributes in the primary key of \(R\); \(\text{inst}(R)\) the instance of \(R\) (set of tuples).

Moreover, given a tuple \(t \in \text{inst}(R)\), \(\text{key}(t)\) denotes the values of the key attributes of \(t\). The absence of information for an attribute is indicated by the symbol \(\perp\).

Definition 1. A relation \(R\) is said to be full if each tuple \(t\) in \(R\) \(t(a) \neq \perp \forall a \in \text{attr}(R)\).

We say that two homogenized relations \(R\) and \(S\), associated to the same concept, are overlapping if \(\text{key}(R) = \text{key}(S)\).

Definition 2. Given two relations \(R\) and \(S\) s.t. \(\text{attr}(R) \subseteq \text{attr}(S)\) and two tuples \(r \in R\) and \(s \in S\), we say that \(r \sqsubseteq s\) if for each attribute \(A\) in \(\text{attr}(R)\), is \(r[A] = s[A]\) or \(r[A] = \perp\). Moreover we say \(R \sqsubseteq S\) if \(\forall t_1 \in \text{inst}(R) \exists t_2 \in \text{inst}(S)\) s.t. \(t_1 \sqsubseteq t_2\).

Definition 3. Let \(R_1, \ldots, R_n\) be a set of overlapping relations. A relation \(R\) is a super relation of \(R_1, \ldots, R_n\) if the following conditions hold:

- \(\text{attr}(R) = \bigvee_{i=1}^{n} \text{attr}(R_i)\)
Moreover, if R is a super relation of \(R_1, \ldots, R_n \), then we say that \(R_i \) is a sub-relation of R for \(i=1..n \).

A set of tuples with the same value for the key attributes is called c-tuple (cluster of tuples) [Ar95]. A relation may be seen as a set of c-tuples. An important feature of the integration process is related to the way conflicting tuples provided by overlapping relations are combined. In the following section we define an operator which allows us to integrate a set of relations preserving the original information.

3.1 The Merge Operator

Given two overlapping relations \(S_1 \) and \(S_2 \), the merge operator, denoted by \(\boxtimes \), integrates the information provided by \(S_1 \) and \(S_2 \). Let \(S = S_1 \boxtimes S_2 \), then the schema of \(S \) contains both the attributes in \(S_1 \) and \(S_2 \), and its instance is obtained by completing the information coming from each input relation with that coming from the other one.

Definition 4. Let \(S_1 \) and \(S_2 \) be two overlapping relations and let

\[
S_{1,2} = S_1 \bowtie \text{key}(S_1) = \text{key}(S_2) S_2 \text{ (resp. } S_{2,1} = S_2 \bowtie \text{key}(S_1) = \text{key}(S_2) S_1) \]

be the result of the left (resp. right) outer join of \(S_1 \) and \(S_2 \) with join condition key\((S_1) = \text{key}(S_2)\).

The merge operator is a binary operator defined as follows:

where:

\[
\Theta(R, S) = \{ t \in R \mid \exists t_1 \in S \text{ s.t. key}(t) = \text{key}(t_1) \} \cup \{ t \mid \exists t_1 \in R, \exists t_2 \in S \text{ s.t. } \forall a \in \text{attr}(R) \left(t[a] = \begin{cases} t_2[a] & \text{if } a \in \text{attr}(S) \land t_1[a] = \bot \\ t_1[a] & \text{otherwise} \end{cases} \right) \}
\]

Observe that given two relations \(R \) and \(S \) such that \(\text{attr}(R) \subseteq \text{attr}(S) \), the binary operator \(\Theta \) replaces null values occurring in \(R \) with values taken from \(S \). Moreover, in the above definition, each tuple \(t \) in \(\Theta(R, S) \) is derived from some tuple \(t_1 \) of \(R \) (resp. \(t_2 \) of \(S \)) by replacing null values of \(t_1 \) (resp. \(t_2 \)) with the values of the corresponding attributes of \(t_2 \) (resp. \(t_1 \)). Thus, the merged relation \(S_1 \boxtimes S_2 \) is defined so that if \(S_2 \) does not contain any tuple \(t_2 \) such that \(\text{key}(t_1) = \text{key}(t_2) \) the resulting tuple will have null values for the attributes not present in \(S_1 \); otherwise, for each tuple \(t_2 \) in \(S_2 \) such that \(\text{key}(t_1) = \text{key}(t_2) \), the operator produces a tuple completing \(t_1 \). In a similar way the operator extends the content of \(S_2 \).

Proposition 1. Let \(S_1 \) and \(S_2 \) be two overlapping relations, then:

- \(\text{attr}(S_1 \boxtimes S_2) = \text{attr}(S_1) \cup \text{attr}(S_2) \)
- \(\text{key}(S_1 \boxtimes S_2) = \text{key}(S_1) = \text{key}(S_2) \)
- \(S_1 \subseteq |S_1 \boxtimes S_2| \) and \(S_2 \subseteq |S_1 \boxtimes S_2| \)

Example 1. Consider the relations \(S_1 \) and \(S_2 \) reported in Fig. 2 and storing information about some employees. In each of them \(Name \) is the key attribute and the functional
dependency \textit{Office} \rightarrow \textit{City} holds. The integrated relation \(T \) is obtained by merging \(S_1 \) and \(S_2 \), i.e. \(T = S_1 \bigotimes S_2 \).

<table>
<thead>
<tr>
<th>Name</th>
<th>Office</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greg</td>
<td>Research</td>
<td>NY</td>
</tr>
<tr>
<td>Red</td>
<td>Sales</td>
<td>WA</td>
</tr>
<tr>
<td>Smith</td>
<td>Admin</td>
<td>NY</td>
</tr>
</tbody>
</table>

\(S_1 \)

<table>
<thead>
<tr>
<th>Name</th>
<th>Office</th>
<th>City</th>
<th>BirthYear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>Sales</td>
<td>WA</td>
<td>1965</td>
</tr>
<tr>
<td>Taylor</td>
<td>Admin</td>
<td>SF</td>
<td>1971</td>
</tr>
<tr>
<td>Lan</td>
<td>Sales</td>
<td>NY</td>
<td>1980</td>
</tr>
</tbody>
</table>

\(S_2 \)

\(T \)

Note that in the integrated relation \(T \) the cluster associated to \textit{Smith} contains two tuples so the key dependency is violated; on the contrary the functional dependency \textit{Office} \rightarrow \textit{City} holds.

Let \(S_i \) and \(S_j \) be two overlapping relations, let \(K = \text{key}(S_i) = \text{key}(S_j) \), \(A=\{a_1,...,a_n\} = \text{attr}(S_i) \cup \text{attr}(S_j)-K \), \(B=\{b_1,...,b_m\} = \text{attr}(S_i)-\text{attr}(S_j) \) and \(C=\{c_1,...,c_q\} =\text{attr}(S_j)-\text{attr}(S_i) \). The merge operator introduced in Definition 4 can be easily expressed by means of the following SQL statement (where, given a relation \(R \) and a set of attributes \(X=\{X_1,...,X_t\} \), the notation \(R.X \) stands for \(R.X_1,...,R.X_t \)):

\[
\begin{align*}
&\text{SELECT } S_i.K, S_i.B, \text{COALESCE}(S_i.a_1, S_j.a_1),...,\text{COALESCE}(S_i.a_n, S_j.a_n), S_j.C \\
&\quad \text{FROM } S_i \text{ LEFT OUTER JOIN } S_j \text{ ON } S_i.K = S_j.K \\
&\quad \text{UNION} \\
&\quad \text{SELECT } S_j.K, S_j.B, \text{COALESCE}(S_j.a_1, S_i.a_1),...,\text{COALESCE}(S_j.a_n, S_i.a_n), S_i.C \\
&\quad \text{FROM } S_i \text{ RIGHT OUTER JOIN } S_j \text{ ON } S_i.K = S_j.K
\end{align*}
\]

where the standard operator \(\text{COALESCE}(a_1,...,a_n) \) returns the first not null value in the sequence.

\textbf{Proposition 2.}

\(- S_1 \bigotimes S_2 = S_2 \bigotimes S_1 \) (commutative property)

\(- (S_1 \bigotimes S_2) \bigotimes S_3 = S_1 \bigotimes (S_2 \bigotimes S_3) \) (associative property)

\(- S_1 \bigotimes S_1 \subseteq S_1 \) (idempotent property)

Note that if the relation \(S \) does not contain null value or it is consistent the idempotent property holds \((S_1 \bigotimes S_1 = S_1) \).

Obviously, given a set of overlapping relations \(S_1, S_2, ..., S_n \), the associated super-relation \(S \) can be obtained as \(S = S_1 \bigotimes S_2 \bigotimes ... \bigotimes S_n \), in other words \(S \) is the integrated view of \(S_1, S_2, ..., S_n \).

The problem we have considered is similar to the one treated in [YO99], which assumes the source relations, involved in the integration process, have previously been homogenized. In particular, any homogenized source relations is a fragment of the global relation, that is it contains a subset of the attributes of the global relation and has its same key \(K \). The technique proposed in [YO99] makes use of an operator \(\Join \), called \textit{Match Join}, to manufacture tuples in global relations using fragments. This operator consists of the outer-join of the \textit{ValSet} of each attribute, where the \textit{ValSet} of an attribute \(A \) is the union of the projections of each fragment on \(\{K,A\} \). Therefore, the application of the
Match Join operator produces tuples containing associations of values that may not be present in any fragment.

Example 2. We report in Figure 3 the relation obtained by applying the Match Join operator to the relations S_1 and S_2 of Example 1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Office</th>
<th>City</th>
<th>BirthYear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greg</td>
<td>Research</td>
<td>NY</td>
<td>∅</td>
</tr>
<tr>
<td>Red</td>
<td>Sales</td>
<td>WA</td>
<td>∅</td>
</tr>
<tr>
<td>Smith</td>
<td>Admin</td>
<td>NY</td>
<td>1965</td>
</tr>
<tr>
<td>Smith</td>
<td>Admin</td>
<td>WA</td>
<td>1965</td>
</tr>
<tr>
<td>Smith</td>
<td>Sales</td>
<td>NY</td>
<td>1965</td>
</tr>
<tr>
<td>Smith</td>
<td>Sales</td>
<td>WA</td>
<td>1965</td>
</tr>
<tr>
<td>Taylor</td>
<td>Admin</td>
<td>SF</td>
<td>1971</td>
</tr>
<tr>
<td>Lan</td>
<td>Sales</td>
<td>NY</td>
<td>1980</td>
</tr>
</tbody>
</table>

Fig. 3 The merged relation $T = S_1 \otimes S_2$

The Match Join operator applied to the source relations of Example 1 produces tuples violating the functional dependency $Office \rightarrow City$ since it mixes values coming from different tuples with the same key in all possible ways. On the contrary our merge operator only tries to derive unknown values so that number of integrated tuples violating the constraints is reduced (see Example 1).

4. Data Integration in the Materialized Approach

The materialization of integrated views, commonly adopted in data warehousing systems, produces a significant reduction in query response time with respect to the virtual approach. In particular, the advantage of the materialized approach is significant when data are provided by multiple databases, entailing expensive joins to build the integrated view [Hu97]. In the presence of materialized views it can be advantageous to store some information about the way data have been obtained, in order to answer queries containing conditions on data origin. Given a set of overlapping relations R_1, \ldots, R_n the correspondent super relation R, obtained by applying the merge operator, does not contain any information on the origin of the data in R. In order to maintain information about the process by which the derived data have been obtained, we associate to each tuple a new attribute (*integrating path attribute*) representing the sequence of the sources that have been employed for deriving the tuple. Thus the schemas of the overlapping basic relations have to be extended with the integrating path attribute, denoted by $Path$.

Definition 5. Let R be a basic relation. A relation S is the extended basic relation of R if the following conditions hold:
- $\text{attr}(S) = \text{attr}(R) \cup \text{Path}$,
- $\text{Path}(S) = R$,
- $R \subseteq S$,
- $\text{key}(R) = \text{key}(R_i) \forall i = 1..n$.

80
Example 3. The extended basic relation associated with the basic relations S_1 and S_2 in Example 1 are represented in Figure 4.

<table>
<thead>
<tr>
<th>Name</th>
<th>Office</th>
<th>City</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greg</td>
<td>Research</td>
<td>NY</td>
<td>S_1</td>
</tr>
<tr>
<td>Red</td>
<td>Sales</td>
<td>WA</td>
<td>S_1</td>
</tr>
<tr>
<td>Smith</td>
<td>Admin</td>
<td>NY</td>
<td>S_1</td>
</tr>
</tbody>
</table>

S_1

Note that from the integration of a set of overlapping extended basic relations we obtain an extended derived relation. In the rest of the paper, if there is no ambiguity, we indicate with extended relation both basic and derived extended relations, that is a generic relation enriched with the integrating path attribute.

4.1 The Extended Merge Operator

In this section we introduce a variant of the merge operator presented previously, which is particularly useful to mediators maintaining materialized views of the integrated information. The **Extended Merge operator**, denoted by \bigtriangledown, receives in input two extended overlapping relations and builds the correspondent super-relation, where the value of the Path attribute of each output tuple is obtained by concatenating the Path values of the input tuples it derives from.

Definition 6. Let S_1 and S_2 be two extended overlapping relations, the relation

$$S_1 \bigtriangledown S_2 = \Theta(S_{1,2} \bowtie S_1, S_2) \cup \Theta(S_{2,1} \bowtie S_2, S_1)$$

where:

$$\Theta(R, S) = \{ t \in R \mid \exists t_i \in S \text{ s.t. } \text{key}(t) = \text{key}(t_i) \} \cup$$

$$\{ t \mid \exists t_i \in R, \exists t_j \in S \text{ s.t. } t_i[\text{Path}] = t_j[\text{Path}] \land$$

$$\forall a \in \text{attr}(R) \setminus \{ \text{Path} \} t[a] = \begin{cases} t_i[a] & \text{if } a \in \text{attr}(S) \land t_i[a] = \perp \\ t_j[a] & \text{otherwise} \end{cases} \}$$

and the symbol \perp denotes the concatenation operator.

Example 4. Consider the extended basic relations S_1 and S_2 in Figure 4. The relation $T = S_1 \bigtriangledown S_2$ is reported in Figure 5.

<table>
<thead>
<tr>
<th>Name</th>
<th>Office</th>
<th>City</th>
<th>BirthYear</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greg</td>
<td>Research</td>
<td>NY</td>
<td>1965</td>
<td>$S_1 S_2$</td>
</tr>
<tr>
<td>Red</td>
<td>Sales</td>
<td>WA</td>
<td>1965</td>
<td>$S_1 S_2$</td>
</tr>
<tr>
<td>Smith</td>
<td>Admin</td>
<td>NY</td>
<td>1965</td>
<td>$S_1 S_2$</td>
</tr>
<tr>
<td>Smith</td>
<td>Sales</td>
<td>WA</td>
<td>1965</td>
<td>$S_1 S_2$</td>
</tr>
<tr>
<td>Taylor</td>
<td>Admin</td>
<td>SF</td>
<td>1971</td>
<td>$S_1 S_2$</td>
</tr>
<tr>
<td>Lan</td>
<td>Sales</td>
<td>NY</td>
<td>1980</td>
<td>$S_1 S_2$</td>
</tr>
</tbody>
</table>

Fig.5 The extended merged relation $T = S_1 \bigtriangledown S_2$

Obviously, given a set of extended overlapping relations S_1, S_2, \ldots, S_n, the associated extended super-relation S can be obtained as $S = S_1 \bigtriangledown S_2 \bigtriangledown \ldots \bigtriangledown S_n$. In other words S is
the integrated view of $S_1, S_2, ..., S_n$. The attribute $Path$ of each tuple t in S corresponds to a permutation of all the extended basic relations $S_1, S_2, ..., S_n$.

4.2 Querying extended relations

The information provided by the $Path$ attribute can be useful for evaluating queries on the materialized views residing at the mediator. In particular, it can be employed to reconstruct the contents of a source relation from the materialized view or to answer queries expressing the satisfaction of user preference criteria about the origin of data.

Origin of data. As previously stated, the $Path$ value of each tuple in the extended super relation represents the sequence of the sources that have been employed for deriving the tuple. In particular, the first source in the path attribute is the one from which the integration process has begun, i.e. the source whose values have been preserved in the global relation. Thus, the original instance of each basic relation, R_i, can be reconstructed by selecting from the extended super relation the tuples having R_i as first source in the $Path$ sequence, and then by projecting on $\text{attr}(R_i)$.

Definition 7. Let $R_1, ..., R_k$ be a set of extended overlapping relations and R be the corresponding extended super relation, then a tuple $t \in R$ is said to be R_j-derived if:

$$\exists t_1 \in R_j, \ t(K) = t(K) \ (\forall a \in \text{attr}(R_k) - Path) \ t_1[a] = t[a], \ \forall \ t_1[a] = _$$

Proposition 3. Let R be an extended relation and R_i be a sub-relation of R, then a tuple t in R is R_i-derived if $Path(t) = R_i \ast ___$, where $__$ denotes any source sequence.

Proposition 4. Let R be an extended relation and R_i be a basic sub-relation of R, and $R' = \Pi_{\text{attr}(R_i)}(\sigma_{Path=R_i \ast ___}(R))$, then:

- $R_i \sqsubseteq R'$ if R_i is a full relation
- $R_i \sqsubseteq R'$ otherwise

Note that, in the materialized approach, the content of each full basic relation can be easily reconstructed from the extended super-relation corresponding to it.

Answering queries satisfying user Preference. The availability of the $Path$ information makes the satisfaction of user preference criteria in queries against materialized views easy. Since the $Path$ attribute stores information about the order in which source relations have been integrated, it establishes a priority order on the way relations have been used to build the output tuple.

A preference constraint is a rule of the form $S_i \prec S_j$, where S_i, S_j are two source relations. Preference constraints imply a partial order on the source relations. We shall write $S_i \prec S_j \prec \ldots \prec S_k$ as shorthand for $S_i \prec S_j \prec S_k \prec \ldots \prec S_k$. The presence of such constraints requires the satisfaction of preference criteria during the computation of the answer. A priority statement of the form $S_i \prec S_j$ specifies a preference on the tuples provided by the relation S_i with respect to the ones provided by the relation S_j.

The satisfaction of a set of priority statements can be easily performed by selecting the tuples whose $Path$ value corresponds to a permutation of the sources coherent with the partial order imposed by the preference criteria.
5. Managing Inconsistent data

We assume that each mediator component involved in the integration process contains an explicit representation of intentional knowledge, expressed by means of integrity constraints. Integrity constraints express semantic information over data, i.e. relationships that must hold among data. Generally, a database D has associated a set of integrity constraints IC. A database instance D is said to be consistent if D satisfies IC, otherwise it is inconsistent. In this paper we concentrate on functional dependencies. Using the technique proposed in [GZ00] we compute consistent answers for possibly inconsistent databases. The technique is based on the generation of a disjunctive program $DP(IC)$ derived from the set of integrity constraints IC. The computation of the consistent answers of a query G can be derived by considering the minimal models of the program $DP(IC)$ over the database D. For a complete description see [GZ00].

Definition 8. Let c be a functional dependency $x \rightarrow y$ over P, which can be expressed by a formula of the form

$$ (\forall x, y, z, u, v) [P(x, y, u) \land P(x, z, v) \rightarrow y = z] $$

then, $dj(c)$ denotes the extended disjunctive rule

$$ \neg P(x, y, u) \lor \neg P(x, z, v) \leftarrow P(x, y, u), P(x, z, v), y \neq z $$

Let IC be a set of functional dependencies, then $DP(IC) = \{ dj(c) \mid c \in IC \}$. Thus, $DP(IC)$ denotes the set of disjunctive rules derived from the rewriting of IC. $MM(DP(IC), D)$ denotes the set of minimal models of $DP(IC) \cup D$.

Definition 9. Given a database D, a set of integrity constraints IC and a query G, then the consistent answer for G over D consists of the three distinct sets denoting, respectively, true, undefined and false atoms:

- $Ans^T(G, D, IC) = \{ q(t) \in D \mid \exists M \in MM(DP(IC), D) \text{ s.t. } \neg q(t) \in M \}$
- $Ans^U(G, D, IC) = \{ q(t) \in D \mid \exists M_1, M_2 \in MM(DP(IC), D) \text{ s.t. } \neg q(t) \in M_1 \text{ and } \neg q(t) \notin M_2 \}$
- $Ans^F(G, D, IC) = \{ q(t) : q(t) \text{ is a false atom} \}$

Theorem 1. Let D be an integrated database, FD a set of functional dependencies and G a query, then the computation of a consistent answer of G over D can be done in polynomial time.

Example 5. Consider the integrated relation T of Example 1 and the functional dependency $Name \rightarrow (Office, City, BithYear)$ stating that $Name$ is a key for the relation. The functional dependency can be rewritten as first order formula:

$$ \forall x, y, z, u, y', x', w' [T(x, y, z, u) \land T(x, y', z, u) \rightarrow y = y' \land x = x' \land u = u'] $$

The associated disjunctive program is

$$ \neg T(x, y, z, u) \land \neg T(x, y', z, u) \leftarrow T(x, y, z, u) \land T(x, y', z, u) \land (y \neq y' \lor x \neq x' \lor u \neq u') $$

The above program has two stable models $M_1 = D \cup \{ \neg T(\text{Smith}, \text{Admin}, \text{NY}, 1965) \}$ and $M_2 = D \cup \{ \neg T(\text{Smith}, \text{Sales}, \text{WA}, 1965) \}$. Thus, the query answering for the office of employee Red is Sales, whereas the answer to the query asking for the office of employee Smith is unknown since there are two alternative values.
6. Conclusions

In this paper, we focused our attention on the integration of conflicting instances [Ar95,ABC99,Du96] related to the same concept and possibly coming from different sources. We have presented an operator, called *Merge operator*, which allows us to combine data coming from different sources, preserving the information contained in each of them and a variant of it, i.e. the *Extended Merge Operator*, which keep track of the process by which the derived data have been obtained. The problem we have considered is similar to the one treated in [YO99], which defines the *Match Join* operator to manufacture tuples in global relations using fragments. The Match Join operator produces tuples containing associations of values that may be not present in any fragment, while the merge operators we introduced only tries to derive unknown values.

Bibliography

